Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of climate/soil of different zones/terroirs on grape characteristics

The role of climate/soil of different zones/terroirs on grape characteristics

Abstract

According to the different concern of the ‘traditional’ and the ‘new’ wine-producing Countries, a variable importance is recognized to the climate/soil and to grapevine cultivars as factors affecting the wine quality. However, the viticultural experience can state that, within each area, climate and soil plays an incontestable role in affecting grape quality, and consequently wine quality, as well as the genetic characteristics of the cultivar.
Zoning different areas is an interesting tool to study and characterize the ecological, geological, ecophysiological and biological factors which interact with the grapevine to determine the wine quality and that can be summarized by the French word ‘terroir’. The aim is to delimit and individuate homogeneous territories that can give homogeneous, identifiable, corresponding, enological products.
Actually, different approaches may be pursued in the ‘zoning studies’: historical, bioclimatic, pedological, varietal or multi-disciplinary. Many experiences in zoning viticultural areas have been done, particularly in the traditional viticultural areas, such as the DOC and DOCG areas in Europe (in particular France and Italy). Different soil types, and microclimatic zones, may influence with the presence of grape phenol precursors, and then the wine structure and aroma. Some examples illustrate the variety-ambient interaction as the basic binomial for grape quality as well as for wines characterized by specific and identifiable attributes.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V. Novello and L. de Palma

1) Dipartimento di Colture Arboree, Via Leonardo da Vinci 44, I 10095 Grugliasco (TO), Italy
2) Dip. Scienze Agroambientali, Chimica e Difesa Vegetale, Via Napoli 25, I 71100 Foggia, Italy

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Protein stabilization of white wines by stabilizing filtration: pilot studies

Protein stabilization is an important part of the winemaking process of white wines, and in this work we present the results of protein stabilization of different monovarietal wines (Xarel.lo, Chardonnay, and Muscat) by a continuous stabilizing filtration process using a column packed with zirconium oxide operating in a continuous regime in a closed loop at pilot scale.

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).

Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard

Cabernet Sauvignon is one of the most important winegrape varieties in Chile. However, temperature raise and decreased rainfall due to climate change can lead to grape quality decrease in certain areas. Amino acids are essential as nitrogen source for yeast but also directly affect grape quality serving as precursors of certain volatile compounds that enhance the wine bouquet. Besides, glutathione is an important tripeptide acting as antioxidant, preventing the appearance of browning pigments in must and exerts a protective effect in volatile compounds.

Application to grapevine leaves of different doses of urea at two phenology stage: effect on the aromatic composition of red wine

This research aimed to study the effect and efficiency of foliar application of urea on the aromatic composition of red wines elaborated from Tempranillo grapes.

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.