Terroir 2004 banner
IVES 9 IVES Conference Series 9 Architecture, microclimate, vine regulation, grape berry and wine quality: how to choose the training system according to the wine type ?

Architecture, microclimate, vine regulation, grape berry and wine quality: how to choose the training system according to the wine type ?

Abstract

This synthetic presentation deals with :
• A description of the variability and the main models of grapevine canopy architecture in the world.
• A precision on the model « potential exposed leaf area SFEp », which estimates the potential of net carbon balance of the plant, and shows a regulating effect of high SFEp levels on production decrease.
• A presentation of plant global regulating processes influenced by the training system on the basis of the biological triptych theory : relation between (SFEp) and dry matter production (« puissance ») fitted by vigour ; relation between SFEp and bunch microclimate fitted by leaf exposure/bunch exposure ratio.
• The stability of the microclimatic equilibrium between leaf and bunch due to the architecture, in comparison with general climatic variations (Multicriteria Climatic Classification).
• Some consequences of SFEp and berry microclimate variations on Syrah wine typeness and quality, on the basis of a comparison in a dry « terroir » between the Vertical trellis, the truncated Lyre, the Lyre-volume.
• A general proposal over a 30 year experience of the most suitable training systems according to the objectives of production and quality. A special focus is made on the choice of the training system in function of the wine typeness (ie : « Lyre wine » concept).

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A Carbonneau

IHEV (High Study Institute of Vine and Wine), Agro Montpellier (France)

Contact the author

Keywords

Architecture, training system, microclimate, canopy, leaf, exposed leaf area, vigour, production, grapeberry, wine quality

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Integrating genomic prediction into grapevine breeding programs

Genomic selection (GS) has emerged as a transformative tool for accelerating breeding programs by predicting the genetic potential of individuals using genome-wide markers.

From grapevines to extreme environments … and back?

I performed my PhD in grapevine physiology under the supervision of Dr. H. Medrano, standing in the vineyards from pre-dawn to sunrise during many hot, wet and sunny days with my colleagues J.M.E. and J.B. I also spent many days and nights facing ticks year-round working in Mediterranean macchias with J.Gu. and M.M. Later I was able to supervise PhD students on grapevines – like A.P. and M.T. – and on Mediterranean vegetation – like J.Gal. With the incorporation to the group of M.R.-C. ‘the puzzle’ was completed and, combining the aforementioned studies, we could conclude (more than 20 years ago) things like: (1) stomatal conductance is the best proxy for ‘water stress’ in studies on photosynthesis; (2) steady-state chlorophyll fluorescence retrieves photosynthesis under saturating light; (3) photoinhibition is not a major photosynthetic limitation under water stress; (4) mesophyll conductance instead is; and (5) mesophyll conductance is a major driver of leaf water use efficiency.

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors.

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.

Novel table grape varieties as “ready-to-eat” products

Consumers are increasingly requesting ready-to-eat products, which are time-saving and convenient. Offering ready-to-eat fruits and vegetables represents a quick and easy way for any consumer to add healthy products to their diet. In this study, we evaluated the aptitude of several table grape varieties to be included in the processing and packaging lines of ready-to-eat products. The following work was based on the characterization of genetic materials and varietal innovation.