Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Methyljasmonate versus nanomethyljasmonate: effect on monastrell nitrogen composition

Methyljasmonate versus nanomethyljasmonate: effect on monastrell nitrogen composition

Abstract

AIM: The aim of this work was to evaluate the effect of preharvest application in Monastrell berries using two different types of applications: conventional treatments (methyl jasmonate) and nanocompounds (nanomethyl jasmonate) on Monastrell nitrogen composition in grapes and wines.

METHODS: The treatments was applied during two vintages (2019 and 2019) in a plot located in the southeast of Spain (Bullas, Murcia). Foliar applications were carried out at veraison and 7 days later. 200 mL per plant will be applied, using Tween 80 at 0.1% (v/v) in each solution. The applied treatments were the following: methyl jasmonate (MeJ) (10 mM) and the application of nanoparticles, nano-MeJ (0.67 mM). The corresponding analyses were made in grapes at harvest and in wines at the end of alcoholic fermentation. The ammonium ion (NH4 +) and the following free amino acids were analysed by HPLC: aspartic acid (Asp), glutamic acid (Glu), serine (Ser), asparagine (Asp), glutamine (gln), histidine (His), glycine (Gly) , threonine (Thr), β-Alanine (β-Ala), arginine (Arg), α-Alanine (α-Ala), γ-aminobutyric acid (GABA), proline (Pro), tyrosine (Tyr), valine (Val ), methionine (Met), cysteine (Cys), isoleucine (Iso), leucine (Leu), tryptophan (Trp), phenylalanine (Phe), ornithine (Orn) and lysine (Lys).

RESULTS: In general terms, the application of elicitors (MeJ and nano-MeJ) significantly increased the nitrogen composition of musts and wines of the Monastrell variety. Although the results obtained were influenced by the climatic differences experienced during the two years of study, so that during the first year more noticeable differences were obtained between the treatments and the control vineyards.

CONCLUSIONS

In conclusion, although the results are preliminary, the exogenous application of nano-MeJ could be an interesting alternative to be used instead of the conventional elicitor with two aims: to reduce the use of agrochemical in plants and improve nitrogen composition in grapes and wines.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria José. Gimenez-Bañón

Murciano Institute Of Research And Agricultural And Food-Spain Juan Daniel Moreno-Olivares- Murciano Institute Of Research And Agricultural And Food-Spain Diego Fernando. Paladines-Quezada- Murciano Institute Of Research And Agricultural And Food-Spain Juan Antonio. Bleda-Sánchez – Murciano Institute Of Research And Agricultural And Food-Spain Jose Ignacio. Fernández-Fernández- Murciano Institute Of Research And Agricultural And Food-Spain Gloria Ramirez- Deparment Of Inorganic Chemistry, Faculty Of Science, University Of Granada (Spain) Jose Manul Delgado-López – Deparment Of Inorganic Chemistry, Faculty Of Science, University Of Granada (Spain)

Contact the author

Keywords

amino acids; yan, methyl jasmonate; nanoparticles

Citation

Related articles…

A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

Climate, especially temperature, plays a major role in grapevine development. Several bioclimaticindices have been created to relate temperature to grapevine phenology (e.g. Winkler Index, Huglin Index, Grapevine Flowering Véraison model [GFV]).

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Veraison as determinant for wine quality and its potential for climate adapted breeding

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs.

Impact of climate change on the viticultural climate of the Protected Designation of Origin “Jumilla” (SE Spain)

Protected Designation of Origin “Jumilla” (PDO Jumilla) is located in the Spanish provinces of Albacete and Murcia, in the South-eastern part of the Iberian Peninsula, where most of the models predict a severe impact of climate change in next decades. PDO Jumilla covers an area of 247,054 hectares, of which more than 22,000 hectares