Terroir 2004 banner
IVES 9 IVES Conference Series 9 Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

Abstract

The South African wine industry is taking an interest in the enhancement of red wine total antioxidant capacity (TAC) with retention of sensory quality to satisfy the demands of increasingly discerning consumers. The focus is especially on the unique South African red wine cultivar, Pinotage. Pinotage has a unique phenolic composition and commercial Pinotage wines (1998 vintage) has an average TAC of 15.3 mM Trolox equivalents which compares well with that of Cabernet Sauvignon. Knowledge of wine phenolic composition, the antioxidant activity of individual phenolic compounds and their respective contribution to the TAC of wines are needed to evaluate the importance of individual phenolic compounds. The TAC of wines could then be manipulated optimally by using viticultural and enological practices to enhance the content of compounds contributing significantly to the TAC. The aim of the study was to determine the antioxidant activity of individual phenolic compounds in Pinotage wines and their contribution to TAC.
A series of 20 young Pinotage wines were analysed to determine their phenolic composition (reversed-phase HPLC) and TAC (ABTS radical cation scavenging assay). Compounds identified include gallic acid, caftaric acid, caffeic acid, coutaric acid, catechin, procyanidin B1, myricetin-3-glucoside (glc), quercetin-3-glc, kaempferol-3-glc, quercetin-3-rhamnoside, myricetin, quercetin, kaempferol, isorhamnetin, delphinidin-3-glc, peonidin-3-glc, petunidin-3-glc, malvidin-3-glc, delphinidin-3-glc-acetate, vitisinA, petunidin-3-glc-acetate, peonidin-3-glc-acetate, malvidin-3-glc-acetate and malvidin-3-glc-coumarate. The polymeric content of each wine was also estimated as mg catechin equivalents/L. Individual phenolic compounds, available as pure standards (gallic acid, caffeic acid, catechin, procyanidin B1, myricetin-3-glc, quercetin-3-glc, kaempferol-3-glc, quercetin-3-rhamnoside, myricetin, quercetin, kaempferol, isorhamnetin, delphinidin-3-glc, peonidin-3-glc, petunidin-3-glc, malvidin-3-glc), were tested at a range of concentrations and their Trolox equivalent antioxidant capacity (TEAC) values calculated.
Taking the concentration and TEAC values of 24 monomeric phenolic compounds which could be quantified, into account, only 14% of the TAC of the wines could be explained. Possible synergism was ruled out, as the measured and calculated TAC of a mixture of phenolic standards was within the experimental error. Sulphur dioxide additions to the phenolic mixtures at two concentrations had no effect on their TAC. To estimate the contribution of polymeric compounds ultrafiltration was performed in an attempt to separate monomers and polymers in 3 wines. The polymeric compounds, and possibly proteins, isolated using ultrafiltration (50000 dalton nominal molecular weight cut-off), contribute about 30% of their TAC values. A large fraction (59%) of the TAC of a wine is due to unknown compounds which may or may not be phenolic.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Dalene de Beer (1), Elizabeth Joubert (2), Johann Marais (2), Marena Manley (1)

(1) Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
(2) Post-Harvest and Wine Technology, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Kinetics modeling of a sangiovese wine chemical and physical parameters during one-year aging in different tank materials

The use of different tank materials during red wine aging has become increasingly popular, but little is known about their impact on wine chemical and physical parameters.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

Key odorants of french syrah wines from the northern rhone valley

Little research has been undertaken to investigate the main contributors to the aroma of Syrah wines from the cool northern part of the Rhone valley despite the historical importance of this cultivar for this wine region. The aim of the present work was to study the key odorants of Crozes-Hermitage wines made

Successive surveys to define practices and decision process of winegrowers to produce “Vins de Pays Charentais” in the Cognac firewater vineyard area

Le vin est un des produits finis que l’on obtient à partir de raisins. La vigne réagit à de nombreux facteurs environnementaux et son comportement est directement influencé par les pratiques culturales

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.