Terroir 1996 banner
IVES 9 IVES Conference Series 9 Pedological factor influence on the viticultural zoning of the Aljarafe Alto (Seville, Spain)

Pedological factor influence on the viticultural zoning of the Aljarafe Alto (Seville, Spain)

Abstract

Aljarafe Alto est une petite zone naturelle dans le département de Séville (Espagne), où le cépage autochtone cultivé est le Palomino Garrido Fino. Les auteurs étudient l’influence de 3 types de sols (sol Rouge fersialitique, sol brun calcaire et Rendsine blanche) sur 9 vignobles de la variété “Palomino Garrido Fino” du “Aljarafe Alto” (Seville).
Les résultats expérimentaux montrent des différences statistiquement significatives pour quelques caractéristiques du potentiel agronomique des sols et leurs conséquences sur le niveau de nutrition minérale des vignobles et sur la qualité des récoltes.
Le traitement statistique des paramètres oenologiques des microvinifications des moûts issus des vignobles étudiés montre le facteur pédologique comme le critère les plus relevant dans le zonage vitivinicole de la région Aljarafe Alto (Seville).

The Aljarafe Alto is a small natural area in the province of Seville (Spain), where the autochthonous vine is the cultivar Palomino Garrido Fino. The authors study the influence of 3 types of soils (Mediterranean red soil (calcic Rhodoxeralf); calcareous brown soil (calcixerolic Xerochrept); white Rendsina (calcicxerollic Xerorthent) in nine vineyard plots. The results reveal statistically significant differences in some characteristics of the agronomie fertility of the soils and, as a consequence, in the mineral nutrition stage of the plants and crop qualify.
Musts proceeding from the vineyard plots chosen for this study were fermented in laboratory. The results from statistical treatment of oenological parameters of these wine samples reveal the pedological factor to be the most relevant for the viticultural zoning of the Aljarafe Alto zone.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

PANEQUE, P.(1); GONZALEZ, J.L. (2); PANEQUE, G.(1)

(1) Departamento de Cristalografia, Mineralogia y Quimica Agricola. Universidad de Sevilla. Campus de Reina Mercedes sin (41071 Sevilla, Spain)
(2) Departamento de Quimica Agricola y Edafologia. Facultad de Ciencias. Universidad de Córdoba (Córdoba, Spain)

Keywords

Aljarafe, Palomino Garrido Fino, zonage vitivinicole, moûts, vins
Aljarafe, Palomino Garrido Fino, viticultural zoning, musts, wines

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

AOC Saint-Romain, Hautes-Côtes-de-Beaune, Burgundy: analysis of a “terroir”

The aim of this study is to provide an overview of the terroir of Saint-Romain, Burgundy, based on three main information sources: official data relating to vines (CVI), soil cartography and a survey of winegrowers’ practices.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.