Terroir 1996 banner
IVES 9 IVES Conference Series 9 Pedological factor influence on the viticultural zoning of the Aljarafe Alto (Seville, Spain)

Pedological factor influence on the viticultural zoning of the Aljarafe Alto (Seville, Spain)

Abstract

Aljarafe Alto est une petite zone naturelle dans le département de Séville (Espagne), où le cépage autochtone cultivé est le Palomino Garrido Fino. Les auteurs étudient l’influence de 3 types de sols (sol Rouge fersialitique, sol brun calcaire et Rendsine blanche) sur 9 vignobles de la variété “Palomino Garrido Fino” du “Aljarafe Alto” (Seville).
Les résultats expérimentaux montrent des différences statistiquement significatives pour quelques caractéristiques du potentiel agronomique des sols et leurs conséquences sur le niveau de nutrition minérale des vignobles et sur la qualité des récoltes.
Le traitement statistique des paramètres oenologiques des microvinifications des moûts issus des vignobles étudiés montre le facteur pédologique comme le critère les plus relevant dans le zonage vitivinicole de la région Aljarafe Alto (Seville).

The Aljarafe Alto is a small natural area in the province of Seville (Spain), where the autochthonous vine is the cultivar Palomino Garrido Fino. The authors study the influence of 3 types of soils (Mediterranean red soil (calcic Rhodoxeralf); calcareous brown soil (calcixerolic Xerochrept); white Rendsina (calcicxerollic Xerorthent) in nine vineyard plots. The results reveal statistically significant differences in some characteristics of the agronomie fertility of the soils and, as a consequence, in the mineral nutrition stage of the plants and crop qualify.
Musts proceeding from the vineyard plots chosen for this study were fermented in laboratory. The results from statistical treatment of oenological parameters of these wine samples reveal the pedological factor to be the most relevant for the viticultural zoning of the Aljarafe Alto zone.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

PANEQUE, P.(1); GONZALEZ, J.L. (2); PANEQUE, G.(1)

(1) Departamento de Cristalografia, Mineralogia y Quimica Agricola. Universidad de Sevilla. Campus de Reina Mercedes sin (41071 Sevilla, Spain)
(2) Departamento de Quimica Agricola y Edafologia. Facultad de Ciencias. Universidad de Córdoba (Córdoba, Spain)

Keywords

Aljarafe, Palomino Garrido Fino, zonage vitivinicole, moûts, vins
Aljarafe, Palomino Garrido Fino, viticultural zoning, musts, wines

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Innovative approaches in the evaluation of the spatial and temporal biodiversity of grape varieties from the Portuguese Bairrada appellation using LIMM-PCA: a study across five harvests

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard and wine ecosystems is required, as well as the varieties plasticity. Particular attention should be devoted to the spatial and temporal interactions between authorized or recommended varieties for a specific demarcated region and clime and vineyard conditions (such as soil type, orientation of the lines, age of the vine, density of planting, harvesting practices, among others).

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

Leaf vine content in nutrients and trace elements in La Mancha (Spain) soils: influence of the rootstock

The use of rootstock of American origin has been the classic method of fighting against Phylloxera for more than 100 years. For this reason, it is interesting to establish if different rootstock modifies nutrient composition as well as trace elements content that could be important for determining the traceability of the vine products. A survey of four classic rootstocks (110-Richter, SO4, FERCAL and 1103-Paulsen) and four new ones (M1, M2, M3 and M4) provided by Agromillora Iberia. S.L.U., all of them grafted with the Tempranillo variety, has been carried out during 2019. The eight rootstocks were planted in pots of 500 cc, on three soils with very different characteristics from Castilla-La Mancha (Spain). In the month of July, the leaves were collected and dried in a forced air oven for seven days at 40ºC. Then, the samples were prepared for the analysis determination, carried out by X-Ray fluorescence spectrometry. The results obtained showed that in the case of content in mineral elements in leaf, separated by soil type, we can report the importance of few elements such as Si, Fe, Pb and, especially, Sr. The rootstock does not influence the composition of the vine leaf for the studied elements that are the most important in determining the geochemical footprint of the soil. The influence of the soil can be discriminated according to some elements such as Fe, Pb, Si and, especially, Sr.

The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

 The manipulation of the genetic basis controlling grapevine adaptation and phenotypic plasticity can be performed either by classical genetics or biotechnologies.