Terroir 1996 banner
IVES 9 IVES Conference Series 9 Study and valorization of vineyards “terroirs” in the Val de Loire

Study and valorization of vineyards “terroirs” in the Val de Loire

Abstract

[English version below]

Face à la concurrence mondiale, il est indispensable de s’orienter vers des vins de qualité, marqués par une typicité et une authenticité inimitables. Le terroir représente, pour une région donnée, un patrimoine unique et non reproductible, qui peut être valorisé à travers l’origine et les caractéristiques sensorielles du vin. Depuis une quinzaine d’années, l’UW du Centre INRA d’Angers développe un programme d’étude sur la Connaissance, l’Influence et la Gestion optimisée des Terroirs viticoles. Une méthode locale de cartographie des terroirs viticoles a été élaborée, basée sur le concept d’Unité Terroir de Base (UTB), identifiée par l’étage géologique, la nature de la roche mère géologique, son degré d’altération et la profondeur du sol. La cartographie est réalisée avec une tarière à main de 1.20 m, à raison d’un sondage/ha en moyenne. Les résultats sont restitués sous forme d’atlas cartographiques communaux, utilisables directement par les techniciens et les vignerons, à la vigne (cartes conseils pour le choix du cépage, du porte-greffe, des pratiques agro-viticoles) et en cave (adaptation des pratiques œnologiques au terroir de chaque parcelle). À partir de ces données, la cave coopérative des Caves de la Loire, installée à Brissac (France) a réalisé pour chaque adhérent. Toutes les opérations réalisées à la vigne y sont enregistrées ce qui conduit à assurer une traçabilité. À chaque livraison de vendange, un «code parcelle» permet d’orienter la vendange en fonction du potentiel œnologique conféré par le terroir aux raisins permettant une vinification par UTB. Cela a permis d’optimiser l’effet terroir sur le vin, et donc, d’obtenir des vins plus qualitatifs, commercialisés sous un label. Une communication forte et originale sur le produit s’est d’ores et déjà installée au profit de toute la filière viticole angevine.

In the current context of market competition, the future of many French vineyards of controlled appellation of origin lies in their capacity to produce wines presenting a genuine typicity and authenticity. The terroir represent a unique and irreproducible patrimony that can be valorized through the origins and the sensory characteristics of the wines. For the last 15 years, the UW of the Centre INRA of Angers has worked on the knowledge, the influence and the optimized management of vineyard terroirs. The study is based on a local method of soil characterization called “Basic Terroirs Units” (UTB concept), taking into account the geological stage, the bed-rock’s nature, its degree of alteration and the soil depth as principal keys of identification. The scale study is 1/12500. The concrete valorization of the work is to produce cartographic atlases for the disposal of the winegrowers. These atlases present some advisory maps in order to adapt both the cultural practices (choice of the grape vine-variety, rootstocks and soil management) and the enological practices, according to the terroir. From these results, a cooperative wine cellar “Les Caves de la Loire” realized a personal file for each member. Every operation executed in the vineyard is registered (tracability). At the time of vintage, a «parcel code » allows to orient the vintage according to the enological potential induced by the terroir to the grapes,(vinification by UTB). This study has already permit to optimize the “terroir effect”, and consequently, to improve the quality of the wines, commercialized with a label. The subject is already in place for the benefice of the whole Anjou wine business.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

E. BESNARD, E .GOULET, D. RIOUX, S. CESBRON, C. MEINEN and R. MORLAT

Cellule “Terroirs Viticoles” – Chambre Régionale d’Agriculture des Pays de la Loire, Avenue Joxé, 49000 ANGERS
Les Caves de la Loire – Route de Vauchrétien, 49320 BRISSAC QUINCE
Unité Vigne et Vin (UW) – Centre INRA d’Angers – 42 rue Georges Morel – 49070 BEAUCOUZE

Keywords

Terroirs viticoles, Cartographie, Unités Terroirs de Base, Val de Loire, Valorisation, Typicité des vins
Vineyard Terroirs, Cartography, Basic Terroirs Units, Val de Loire, Valorization, Wine typicity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Biophysical and agronomical drivers of the distribution of Plasmopara viticola oospores in vineyard soils

Grapevine downy mildew (GDM), caused by the obligate biotroph oomycete Plasmopara viticola, is one of the most destructive diseases in viticulture.

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

Flor yeast diversity and dynamics in biologically aged wines

Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species.

Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

This study focuses on investigating the effects of climate change on the plant physiology and berries of Vitis vinifera cv “Monastrell” in a commercial vineyard managed organically in Southeastern Spain (Jumilla, Murcia). For this purpose, open top chambers and rainout shelters were employed to simulate warming (~2-7 ºC, W) and rainfall reduction (~30%, RR) respectively. Additionally, a combination of both treatments (W+RR) was employed. Vines without either top chambers or rainout shelters were considered as control (C). The experiment was established in February of 2023. Predawn leaf water potential (measured using a pressure chamber), stomatal conductance (assessed with a porometer at mid-morning) and leaf chlorophyll and flavonoid content (measured using the Dualex® leaf clip sensor) were analyzed at veraison (5 months after the installation of structures).

Winery by-products as potential bioresources for green valorization and sustainable biotechnological applications

The wine and distillery industries are among the most prominent sectors in EU agriculture, where 75% of grape production is dedicated to winemaking.