Terroir 1996 banner
IVES 9 IVES Conference Series 9 Definition and planning of viticultural landscapes case study in the “Côtes du Rhône Gardoises”

Definition and planning of viticultural landscapes case study in the “Côtes du Rhône Gardoises”

Abstract

[English version below]

Les préoccupations actuelles autour des paysages viticoles vont au-delà des clichés promotionnels développés par les stratégies marketing. En effet, les paysages sont aujourd’hui au cœur d’une demande sociale croissante qui se traduit par différentes lois (la loi paysage de 1993, le paysage reconnu comme patrimoine commun de la nation par la loi n°95-101, la création du Conseil national du paysage par arrêté du 8/12/2000). Plus que des vitrines, les paysages deviennent ainsi de véritables objets de consommation et forment les nouveaux supports du développement d’un territoire et de ses activités. Ainsi, pour le vin, les paysages viticoles constituent de véritables enjeux pour la filière. Mais pour que les paysages viticoles servent la filière, elle a besoin de les identifier, de les caractériser, de les nommer et donc de les zoner. Cette communication a pour objectif de définir et d’identifier la diversité que recouvre l’expression de paysages viticoles. Partant d’une définition vaste et subjective, nous proposons une grille d’analyse théorique visant la caractérisation des paysages liés à l’activité vitivinicole par une typologie. Cette première approche rend donc plus lisible le concept de paysage viticole en soulignant la diversité de ses composants et de ses expressions. Sans se limiter à une approche théorique des paysages viticoles, l’ensemble de la démarche est appliqué dans un second temps à un cas concret, la partie gardoise de l’Appellation d’Origine Contrôlée Côtes du Rhône.

Current worries about viticultural landscapes are beyond basic views that are shown through marketing strategies. Thus, as an answer to wider social needs, several laws protecting landscape were enforced in the last few years [eg. “loi paysage” in 1993, acknowledgment of the landscape as a National and common heritage with the law 95-101, implementation of the landscape National council in December 2000]. However, besides legal steps, the landscape becomes a mass consumption product that has a deep impact on the land development and its activities. Therefore, viticultural landscapes influence the wine sub sector through economical and cultural assets.
However, in order to support the wine sub sector viticultural landscapes must be known, described and named ; in addition their land use has to be planned. First of all, a clear overview of viticultural landscapes must be conducted to help sub sector’s actors to define the latter. Furthermore, and as a result, viticultural landscapes diversity will be identified. Starting from a wide and subjective concept, we suggest an analysis framework that would allow us to qualify landscapes with vineyards’ activities. We have based our methodology on a systemic analyze that gathers similar units, and ends up in creating a vineyards’ typology. Therefore, this first step shows a diversity that clarifies the viticultural landscape concept. However, this article is not restricted to a theoretical approach, and shows the application of our method on a practical case study conducted in the Gardoise area of the “AOC Côtes du Rhône”.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Laurence FABBRI (1); Monique DEMARQUE (2); François MICHAUD (3)

(1) and (2) CNRS UMR 5045, Université Paul. Valéry, Route de Mende, 34199 Montpellier cedex 5, France
(3) Université Montpellier I, 5 bd Henri IV, BP 1017, 34006 Montpellier cedex 1, France

Keywords

paysages viticoles, définition, artalyse, zonage, Côtes du Rhône gardoises
viticultural landscapes, definition, analyze, zoning, Côtes du Rhône gardoises

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Prospects of thermal imaging as a non-invasive tool to assess water status for irrigation scheduling in commercial vineyards

Aim: Irrigated viticulture is expanding worldwide mainly as a short-term adaptation strategy to climate change. Plant-based methods are increasingly being used for irrigation scheduling in commercial vineyards. Canopy temperature (TC) has long been recognized as an indicator of plant water status. TC, but also the thermal stress indices, e.g. crop water stress index (CWSI) and stomatal

Effects of Non-Grape Materials (MOG) on wine quercetin composition: insights from synthetic and Merlot grape juice fermentation

Quercetin precipitation has become an increasingly common issue in red wine, often resulting in visually unpleasant sediments and diminished product quality.

Characterization of vineyard sites for quality wine production. German experiences

The quality of grapevines measured by yield and must density in the northern part of Europe conditons can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another. One hundred year observations in Johannisberg from 1890 to 1991 demonstrate for the yield formation a clear dependancy from the year combined with a steady increase in productivity; latter a proof of positive clonal selection efforts.

Growers’ attitudes towards organic certification: the case of Central Otago, New Zealand

New Zealand viticulture has long been characterised by sustainable grape growing practices as promoted by Sustainable Winegrowing New Zealand (SWNZ) as well as by Organic Viticulture.

Response of red grape varieties irrigated during the summer to water availability at the end of winter in four Spanish wine-growing regions: berry phenolic composition

Water availability is the most limiting factor for vineyard productivity under Mediterranean conditions. Due to the effects caused by the current climate change, wine-growing regions may face serious soil moisture conservation problems, due to the lower water retention capacity of the soil and higher soil irradiation. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETo) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on berry phenolic composition at harvest.