Terroir 1996 banner
IVES 9 IVES Conference Series 9 Contribution à l’étude des relations entre des variables de fonctionnement des terroirs du Val de Loire et l’évolution des acides organiques des baies durant la maturation du raisin

Contribution à l’étude des relations entre des variables de fonctionnement des terroirs du Val de Loire et l’évolution des acides organiques des baies durant la maturation du raisin

Abstract

[English version below]

Dans les terroirs du Val de Loire, la précocité du cycle de la vigne et son alimentation en eau sont des variables de fonctionnement qui influent de manière importante sur la composition des baies à maturité. La présente étude aborde l’analyse du rôle de ces variables sur l’évolution des acides organiques des baies, constituants essentiels de la qualité des vins. La teneur en acide malique apparaît corrélée négativement à la précocité induite par le terroir ; la relation est meilleure en début de maturation qu’à maturité. Durant tout le cycle de la plante, des conditions climatiques favorables à une croissance soutenue semblent jouer un rôle positif sur la teneur en acide tartrique, mais certains facteurs climatiques sont responsables d’une combustion plus rapide de l’acide malique durant la maturation. L’évolution conjointe de ces deux acides organiques peut être appréciée au travers de deux rapports : acide tartrique/acide malique et acide tartrique/( acide tartrique + acide malique) encore appelé coefficient de maturation. En début de maturation, les valeurs de ces deux rapports sont en liaison avec le niveau de précocité des terroirs. Les écarts entre terroirs augmentent au cours de la maturation. A maturité, les différences observées varient du simple au quadruple selon le terroir et le millésime ; elles semblent imputables à la fois à la précocité et à la contrainte hydrique. Le rapport acide tartrique/acide malique discrimine mieux les terroirs que le coefficient de maturation.

In the terroirs of the Mid-Loire Valley, the precocity of the cycle of grapevine and its water intake regime are functionning variables which influence strongly berry composition at maturity time. The present study deals with the role of these variables on the evolution of organic acids, which are considered as major components of wine quality. The malic acid content is negatively correlated to the terroir-induced precocity; the relationship is better at the beginning of the maturation process than at its end. All the climatic factors which can enhance growth during all the cycle seems to favor a higher tartaric acid content, but some of them are also responsible for a quicker combustion of malic acid during maturation. The joint evolution of these two organic acids can be appraised through two ratios: tartaric/malic acid and tartaric/ [tartaric + malic] acid, the latter also known as the maturation coefficient. At the beginning of the maturation process these ratios appear to be mainly related to the level of precocity of the terroirs. The gap between terroirs increases during maturation. At maturity, the differences may vary from one to four, according to the terroir and the vintage; they seem to be due to both the precocity and the level of water stress. The tartaric/malic acid ratio is more discriminant than the maturation coefficient in terms of behaviour of the grapevine.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

G. Barbeau, R. Morlat, C. Asselin, Y. Cadot

Unité de Recherches Vigne et Vin, Centre INRA d’Angers (France)

Keywords

terroirs viticoles, acides organiques, précocité, alimentation hydrique
viticultural terroirs, organic acids, precocity, water intake regime

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

High resolution climatic zoning of the Portuguese viticultural regions

Viticulture and winemaking represent a key sector for the Portuguese economy. As grapevines are strongly governed by atmospheric factors, climate change may impose a major threat to this crop. In this study, the current-past (1950-2000) and future (2041-2070) climatic conditions in Portugal are analyzed using a number of bioclimatic indices, including a new categorized index (CatI).

Novel protocols for variable rate vineyard management

The advent of precision viticulture (PV) has allowed to address problems related to spatial and temporal variability at the within-field scale. Nowadays, several remote and proximal sensing solutions allow description of the existing variability at different temporal and ground resolution through extremely robust soil, vigor, yield, and grape quality maps. In parallel, numerous studies have described grapevine performances within the homogeneous zones and identified soil as main driver of variability. There is a broad consensus that different vigor zones within the same plot may show differential canopy growth, yield and fruit composition, depicting diverse enological potentials and cultural needs.

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.

High-resolution aerial thermography for water stress estimation in grapevines

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels.