Terroir 1996 banner
IVES 9 IVES Conference Series 9 Comportement hydrique des sols viticoles et leur influence sur le terroir

Comportement hydrique des sols viticoles et leur influence sur le terroir

Abstract

L’étude des relations Terroir – Vigne – Raisin est complexe. La recherche et le développement des facteurs qualitatifs qui influencent le caractère des vins sont multiples. Divers travaux mettent en évidence la relation entre l’alimentation en eau de la plante, son développement végétatif et les caractéristiques de ses raisins. Après étude agropédologique préliminaire, nous avons implanté des tubes neutroniques dans les vignobles du Mandement (canton de Genève) et de Chamoson (canton du Valais), à des profondeurs se situant entre 4 et 9 mètres. Nous avions pour but de considérer le régime hydrique de quelques sols caractéristiques. En parallèle, nous avons enregistré les paramètres mésoclimatiques et microclimatiques des régions concernées, observé le développement du végétal et suivi l’évolution de la maturation des baies.
Dans ce contexte, nous nous sommes intéressés plus particulièrement à l’influence du régime hydrique, sans négliger la problématique de l’irrigation. L’on ne saurait aborder ce sujet sans tenir compte de l’enracinement de la vigne: les racines explorent non seulement les premiers décimètres du sol, mais également, lorsque les conditions les y obligent, le sous-sol, allant parfois même jusqu’à pénétrer la roche-mère. Ainsi assurent-elles l’alimentation en eau de la vigne.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

HERVÉ DETOMASI

École d’ingénieurs de Changins, 1260 Nyon, Suisse

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Life cycle assessment (LCA) to move towards more environmentally friendly winegrowing

As six on the nine planetary boundaries have already been crossed, putting our safe life on Earth at risk (Rockström et al., 2024) and agriculture is significantly responsible for it (Campbell et al., 2017), viticulture, faces the challenge of reducing its environmental impacts through fundamental changes to its practices.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Climate modeling at local scale in the Waipara winegrowing region in the climate change context

In viticulture, a warming climate can have a very significant impact on grapevine development and therefore on the quality and characteristics of wines across different spatial scales, ranging from global to local. In order to adapt wine-growing to climate change, global climate models can be used to define future scenarios, but only at the scale of major wine regions. Despite the huge progress made over the last ten years in terms of the spatial resolution of climate models (now downscaled to a few square kilometres), they are not yet sufficiently precise to account for the local climate variability associated with such parameters as local topography, in spite of these parameters being decisive for vine and wine characteristics. This study describes a method to downscale future climate scenarios to vineyard scale. Networks of data loggers have been used to collect air temperature at canopy level in the Waipara winegrowing region (New Zealand) over five growing seasons. These measurements allow the creation of fine-scale geostatistical models and maps of temperature (at 100 m resolution) for the growing season. In order to model climate change at pilot site scale, these geostatistical models have been combined with regional climate change predictions for the periods 2031-2050 and 2081-2100 based on the RCP8.5 climate change scenario. The integration of local climate variability with regionalized climate change simulations allows assessment of the impacts of climate change at the vineyard scale. The improved knowledge gained using this methodology results from the increased horizontal resolution that better addresses the concerns of winegrowers. The results provide the local winegrowers with information necessary to understand current processes, as well as historical and future viticulture trends at the scale of their site, thereby facilitating decisions about future response strategies.

The role of œnology in the enhancement of terroir expression

The reality of terroir is reflected by the typicality that it confers on the wine. The relationship between the origin of wine and its quality did already exist before the appearance of œnological science. Producers and merchants have always tried to improve wine quality in order to satisfy their clients.

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.