Terroir 1996 banner
IVES 9 IVES Conference Series 9 Relation entre les caractéristiques des fromages d’Appellation d’Origine Contrôlée et les facteurs de production du lait

Relation entre les caractéristiques des fromages d’Appellation d’Origine Contrôlée et les facteurs de production du lait

Abstract

Les fromages d’Appellation d’Origine Contrôlée (AOC) représentent un enjeu économique important pour la filière laitière (11 % des fromages produits en France sont des fromages d’AOC, et dans certaines régions de montagne, cette proportion dépasse 50 %). Les spécificités de ces fromages et leurs liaisons avec les caractéristiques du terroir constituent un système complexe où interagissent en particulier la technologie fromagère et les caractéristiques des laits (composition chimique en particulier). Ces dernières dépendent elles-mêmes des caractéristiques des animaux (origine génétique, facteurs physiologiques, état sanitaire) et de leur mode de conduite (alimentation, hygiène, traite…) (fig. 1). L’influence de ces facteurs de production (alimentation et type d’animal en particulier) sur les caractéristiques des fromages est fréquemment mise en avant par les fromagers, sur la base d’observations empiriques. Il existe cependant très peu de travaux expérimentaux sur le sujet, en raison, entre autres, de la difficulté de séparer correctement les effets propres de ces facteurs d’amont de ceux liés à la technologie fromagère. Dans le cas des fromages d’AOC, pour lesquels les possibilités de modifier les caractéristiques du lait au cours de la fabrication sont limitées voire interdites, cette approche est particulièrement importante puisqu’une des justifications de l’AOC est justement sa relation au terroir dont certains facteurs de production sont des éléments essentiels. Les travaux entrepris depuis quelques années dans ce domaine, en relation étroite avec la profession, visent à fournir des éléments objectifs d’évaluation des effets de certains de ces facteurs de production. Cela nécessite de maîtriser correctement la technologie fromagère utilisée. Dans ce texte nous donnerons quelques exemples de travaux effectués sur l’effet de la nature des fourrages offerts aux vaches (première partie) ou de la nature de la microflore du lait (seconde partie) sur les caractéristiques de fromages fabriqués dans des conditions technologiques identiques ou voisines.

DOI:

Publication date: April 11, 2022

Type: Poster

Issue: Terroir 1996

Authors

J.B. COULON, I. VERDIER, B. MARTIN, R. GRAPPIN

INRA, Laboratoire Adaptation des Herbivores aux Milieux, 63122 St Genès Champanelle
INRA, Laboratoire de Recherches Fromagères, route de Salers, 15000 Aurillac
GIS Alpes du Nord, 11 rue Métropole, 73000 Chambéry
INRA, Station de Recherche en Technologie et Analyses Laitières, 39800 Poligny

Tags

IVES Conference Series | Terroir 1996

Citation

Related articles…

The influence of climate on the grapevine phenology and content of sugar and total acids in the must

For the period of 10 years in the condition of Skopje vineyard area, at two regional (Vranec and Smederevka) and two international (Cabernet sauvignon and Chardonnay) grapevine cultivars, the researches are done.

Innovative red winemaking strategy: biosurfactant-assisted extraction and stabilization of phenolic compounds

The color is the first attribute perceived by consumers and a major factor determining the quality of red wines. This depends mainly on the content of grape anthocyanins and their extraction into the juice/wine during winemaking. Furthermore, these compounds can undergo reactions that influence the chemical and sensory characteristics of the wine. Monomeric forms are prone to oxidation and adsorption on solid parts.

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.

Quantification of γ-nonalactone in botrytized and non-botrytized New Zealand and Australian wines

ƴ-Nonalactonehas been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.