terclim by ICS banner
IVES 9 IVES Conference Series 9 Postveraison shoot trimming in Tannat and Merlot: preliminary results on yield components, plant balance and berry composition

Postveraison shoot trimming in Tannat and Merlot: preliminary results on yield components, plant balance and berry composition

Abstract

There is currently a trend towards the production of wines with low alcohol content. To achieve this, grapes with low sugar content must be used. There are techniques at the vineyard level that can delay ripening and avoid excessive sugar accumulation without, a priori, affecting the final polyphenol content. Postveraison shoot trimming (PVST) is experimentally evaluated for these purposes, but its impact under Uruguayan climatic conditions with high interannual variability is not known. The aim of this work is to assess the PVST in Tannat and Merlot cultivars and their impact on yield components, plant balance and berry primary composition. In this study, two commercial vineyards of 10 years old Tannat and Merlot (grafted on SO4) at Canelones Department were selected. During the 2020-201 growing season, grapevines were submitted to PVST when grapes reached 15º Brix. In a randomized block, trimmed (T) and control (C) plants were evaluated with three repetitions each cultivar. Evaluation of the evolution of primary berry composition during ripening, measurement of yield components and plant balance were performed. For both cultivars, PVST did not affect yield components. Merlot reached 5.4 kg per plant and Tannat 7.1 kg, with not statistical significance between treatments. However, statistical differences were observed in terms of plant balance. In Merlot Ravaz Index reached a difference of 5.3 (12.0 in T and 6.7 in C) meanwhile Tannat reached 3.5 of statistical difference (13.7 in T and 10.2 in C). The tendency to imbalance for the treated plants had an impact on the final grape composition. Merlot grapes showed statistical difference in final total acidity (0.3 g of difference between treatments) while treatments impact final sugar content on Tannat grapes (10.0 g of difference between treatments). Further studies are needed to assess the impact of different canopy management techniques in our conditions.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Mercedes Fourment, Agustina Clara, Valeria Cazzola, Julia Salvarrey and Diego Piccardo

Facultad de Agronomía, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay

Contact the author

Keywords

Tannat, Merlot, canopy management, climate variability, Uruguay

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Implementing VIS-NIR spectroscopy as a rapid and non-intrusive technique for assessing anthocyanin and phenolic concentrations in Vitis vinifera L. Grenache whole grape berries

Anthocyanins and phenolic compounds play a crucial role in winemaking, contributing to the profile, flavor, color, texture, and stability of wine. Grape clusters, specifically Vitis vinifera L. cv. Grenache, were handpicked from a commercial vineyard sited in Tudelilla, La Rioja, Spain (42°18′ 52.26″, Long. -2°7′ 59.15″, Alt. 582 m) on five distinct dates from veraison to harvest during the 2015 season. Non-contact spectral measurements were conducted on intact grape berries using a VIS-NIR spectrometer operating in the 570 – 1000 nm spectral range under controlled laboratory conditions, positioned at a distance of 25 cm from the berries. The quantification of 16 anthocyanins and phenols in 120 grape clusters was performed using HPLC, established as the reference method for validating the spectral tool.

Immunotestπ: a new test for the determination of proteic stability in white and rosé wines

Proteic haze is a problem which may occur in all fruit-based beverages and fermented juices (beer, cider, wine). When it occurs, the economic loss is important.

Evaluation of colloidal stability in white and rosé wines investing Dynamic Light Scattering technology

Proteins constitute one of the three main components of grape juice and white wine, phenolic compounds and polysaccharides being the others. A specific group of the total grape-derived proteins resists degradation or adsorption during the winemaking process and remains in finished wine if not removed by the commonplace commercial practice of bentonite fining. While bentonite is effective in removing the problematic proteins, it is claimed to adversely affect the quality of the treated wine under certain conditions, through the removal of colour, flavor and texture compounds. A number of studies have indicated that different protein fractions require distinct bentonite concentrations for protein removal and consequent heat stabilization.

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.