terclim by ICS banner
IVES 9 IVES Conference Series 9 Climate change impacts: a multi-stress issue

Climate change impacts: a multi-stress issue

Abstract

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However, the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.  

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Nathalie Ollat, Elisa Marguerit, Ghislaine Hilbert, Eric Gomès, Gregory Gambetta and Cornelis van Leeuwen

EGFV, Univ Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

abiotic stresses, biotic stresses, heat, drought, adaptation, central regulatory pathways

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Screening of aroma metabolites within a set of 90 Saccharomyces strains

Currently, the main demand in the global wine market relies on products with unique flavour profiles, character, and typicity, and the metabolism of yeasts greatly influences the organoleptic properties of wines. Therefore, the natural diversity of Saccharomyces strains rises in interest over the last decade, but a large part of this phenotypic diversity remains unexplored

On the relationship between climate and “terroir” at different spatial scales: the input of new methodological tools

Un grand nombre de travaux ont été consacrés à la mise en éyidence et à la quantification de l’effet du climat sur la qualité de la production viticole. IIs ont permis de caractériser les grands types de production à une large échelle géographique, et d’en évaluer les variations interannuelles au niveau des millésimes.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

Association between dietary pattern and wine consumption and Alzheimer’s disease in a cohort from La Rioja (Spain)

Addressing modifiable risk factors is the most promising strategy to prevent/delay Alzheimer Disease (AD)[1]. The aim of the study was to establish the connections between dietetic habits, wine consumption and AD. Thus, 98 volunteers were recruited: 50 diagnosed as AD and 48 healthy/controls. The Food Frequency Questionnaire (FFQ) was used for dietary patterns assessment and, based on these data, the Mind Diet Score was calculated. (Poly)phenol metabolites (especially derived from wine consumption) were analyzed by UPLC-QqQ-MS/MS in 24-h urine samples to confirm dietary (poly)phenol consumption.

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation. Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.