terclim by ICS banner
IVES 9 IVES Conference Series 9 Rapid damage assessment and grapevine recovery after fire

Rapid damage assessment and grapevine recovery after fire

Abstract

There is increasing scientific consensus that climate change is the underlying cause of the prolonged dry and hot conditions that have increased the risk of extreme fire weather in many countries around the world. In December 2019, a bushfire event occurred in the Adelaide Hills, South Australia where 25,000 hectares were burnt and in vineyards and surrounding areas various degrees of scorching and infrastructure damage occurred. The ability to coordinate and plan recovery after a fire event relies on robust and timely data. The current practice for measuring the scale and distribution of fire damage is to walk or drive the vineyard and score individual vines based on visual observation. The process is time consuming, subjective, or semi-quantitative at best. After the December 2019 fires, it took many months to access properties and estimate the area of vineyard damaged. This study compares the rapid assessment and mapping of fire damage using high-resolution satellite imagery with more traditional ground based measures. Satellite imagery tracking vineyard recovery in the season following the bushfire is being correlated to field assessments of vineyard productivity such as canopy health and development, fertility and carbohydrate storage. Canopy health in the seasons following the fires correlated to the severity of the initial fire damage. Severely damaged vines had reduced canopy growth, were infertile or had very low fertility as well as lower carbohydrate levels in buds and canes during dormancy, which reduced productivity in the seasons following the bushfire event. In contrast, vines that received minor damage were able to recover within 1-2 years. Tools that rapidly and affordably capture the extent and severity of damage over large vineyard area will allow producers, government and industry bodies to manage decisions in relation to fire recovery planning, coordination and delivery, improving the efficiency and effectiveness of their response.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Cassandra Collins1,2, Annette James1, Jingyun Ouyang3, Andy Clarke3, Sebastien Wongand Michaela Ritchie3

1School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, Australia
2ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, Adelaide, Australia
3Consilium Technology Pty Ltd, Adelaide, Australia

Contact the author

Keywords

scorching, satellite imagery, productivity, vineyard recovery, fertility

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

137Cs analysis by gamma spectrometry and its potential for dating Portuguese old wines

Analytical methods for dating wines often rely on assessing anthropogenic and cosmogenic radionuclides, including 14C and 137Cs [1,2].

Enological potential of red grapes: cultivars and geographic origin of vineyards

The study of technologic and phenolic maturation is very efficient to determinate quality potential of red grapes cultivars and clones under different maturity levels or geographic origins

Characterization of “territoires” throughout the production of wines obtained with withered grapes: the cases of “Terra della Valpolicella” (Verona) and “Terra della Valle del Piave” (Treviso) in Northern Italy

Dans la définition et la description d’un “territoire” (“terra” en italien), avec les facteurs du milieu et génétiques, un rôle important est joué par ceux agronomiques, techniques et de culture qui contribuent à caractériser le produit d’une zone spécifique.

Use of artificial intelligence for the prediction of microbial diseases of grapevine and optimisation of fungicide application

Plasmopara viticola, the causal agent of downy mildew (DM), and Uncinula necator, the causal agent of powdery mildew (PM), are two of the main phytopathogenic microorganisms causing major economic losses in the primary sector, especially in the wine sector, by wilting bunches and leaves with a consequent decrease in the photosynthetic rate of the plant and in the annual yield. Currently, the most widespread methods for planning spraying are based on the 3-10 rule, which states that the first application should take place when: (i) the air temperature is greater than 10°C; (ii) shoots are equal or greater than 10 cm; and (iii) a minimum of 10 mm rainfall within 24–48 hours has occurred, or at the beginning of the bud break with periodic applications according to the manufacturer’s instructions.