terclim by ICS banner
IVES 9 IVES Conference Series 9 Adaptation to soil and climate through the choice of plant material

Adaptation to soil and climate through the choice of plant material

Abstract

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Éric Duchêne

SVQV, University of Strasbourg, INRAE, Colmar, France

Keywords

grapevine, varieties, genetics, modelling

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Chinese localization of wine aroma descriptors

Wine aroma descriptors are important tools for wine evaluation. The present well-known wine aroma descriptor system was created and based on Western culture, which makes difficult for Chinese consumers to recognize and learn wine. AIM: The aim of this study was to update the wine aroma descriptor system for Chinese.

Methods: Fifty-four wine aroma descriptors of ‘Le nez du vin’ was used as substitution candidates. Firstly, a survey on unfamiliar aromas was distributed to 150 untrained Chinese wine consumers. Twenty attributors, such as blackcurrent buds, quince, linden, were selected as the most 17 unfamiliar. Then, a descriptive analysis was performed by trained tasting panel to substitute the targeted twenty aromas perfume. Furthermore, reference standards were looked and new le nez du vin were made. Finally, a substitution analysis was performed to replace the unknown wine aroma to the Chinese local aromas.

Modulating role of SO2 in white wine protein haze formation

Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for the white wine protein haze formation is not fully characterized. Herein, a new model is proposed, which is based on the experimental identification of sulfur dioxide as a major modulating factor inducing wine protein haze upon heating. As opposed to other reducing agents, such as 2-mercaptoethanol, dithiothreitol and tris(2-carboxyethyl)phosphine hydrochloride (TCEP), the addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions and can lead to the formation of novel inter/intraprotein disulfide bonds. Those are eventually responsible for wine protein aggregation which follows a nucleation-growth kinetic model as shown by dynamic light scattering [1].

Optimization of aroma production in grape cell suspensions induced by chemical elicitor

Methyl-jasmonate (MeJA) induces the production of at least 25 compounds with sesquiterpene- like mass spectra in ‘Cabernet sauvignon’. Tost effective concentration of MeJA in stimulating the production of sesquiterpenes was found to be 500 µM if added when the cell suspensions had a PCV of 35 %, and 1000 if added when the cell suspensions had a PCV of 70 %.

Rootstock effects on Grüner Veltliner ecophysiology in the Kremstal wine region of Austria

Understanding the impact of rootstocks on grapevine water relations is crucial to face climate change maintaining vineyard productivity and sustainability.

Supporting wine production from vineyard to glass through secure IoT devices and blockchain

Temperature fluctuations can significantly affect the chemical composition of wine and in turn its taste and aromas.