terclim by ICS banner
IVES 9 IVES Conference Series 9 Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

Abstract

In the study of terroir, a separate analysis of its many component factors can be of great help in accurately identifying a vineyard’s natural elements that impact wine quality and typicity. This research used a dedicated pluri-disciplinary approach to investigate the ecological characteristics, including geology and geographical features, of 14 vineyards that produce Gewürztraminer and Sauvignon Blanc cultivars in the alpine Alto Adige DOC wine region. Both the geopedological method using Vineyards Geological Identity (VGI) and the new Solar Radiaton Identity (SRI) topoclimatic classification method were used to provide analytical measurements and qualitative/quantitative characterisations. In addition, wide-ranging targeted and untargeted oenological and chemical analyses were carried out on grapes, musts and wines to correlate the soils’ geomineral and physical conditions with the biochemical properties of their fruits and wines. The research identified strong correlations between vineyard geo-identity and wine biofingerprint, confirming a mineral traceability of strontium rubidium ratio and some minerals distinctive to the local geology, such as K, Ca, Ag, Ba and Mn.  The study also discovered that particular geomineral and physical soil conditions of the studied vineyards are related to the different amount of amino acids, primary varietal aromas and polyphenols found in grapes, musts and wines. The research confirmed that winemaking technologies support oenological quality, although in some cases, human practices can overpower certain characteristic elements in wine, erasing the typical imprint left by the vineyards’ natural terroir, which becomes less traceable. Terroir abiotic ecological factors and vineyard identity can be classified in detail using the new VGI and SRI analysis methods to discover interrelationships between geo-pedological and topoclimatic conditions that impact wine quality. These methods are also helpful in identifying which ecological elements are exclusive to a particular vineyard or wine sub-region.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Carlo G. Ferretti

GIR Geo Identity Research, Bolzano, Italy 

Contact the author

Keywords

geology, terroir, traceability, typicity, wine

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

La producción vitivinícola como fuente de impactos positivos en el medio seminatural

Wine is at risk of being labelled as a dangerous health product, based on studies that focus on its alcohol content. However, multiple studies suggest that moderate consumption is healthy. Changing the focus from health impacts to the environmental and socioeconomic impacts that wine companies cause, what can be said?

Risposte enologiche del Nero d’Avola su suoli a diverso grado di salinità

Vengono riportati i risultati enologici di uno studio condotto sul Nero d’Avola in un tipico ambiente viticolo siciliano, in cui insistono suoli che presentano un diverso grado di salinità.

Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

In viticulture, the challenges of local climate modelling are multiple: taking into account the local environment, fine temporal and spatial scales, reliable time series of climate data, ease of implementation and reproducibility of the method. At the local scale, recent studies have demonstrated the contribution of spatialization methods for ground-based climate observation data considering topographic factors such as altitude, slope, aspect, and geographic coordinates (Le Roux et al, 2017; De Rességuier et al, 2020). However, these studies have shown questions in terms of the reproducibility and sustainability of this type of climate study. In this context, we evaluated the potential of MODIS thermal satellite images validated with ground-based climate data (Morin et al, 2020). Previous studies have been encouraging, but questions remain to be explored at the regional scale, particularly in the dynamics of the massive use of bioclimatic indices to classify the climate of wine regions. The results at the local scale were encouraging, but this approach was tested in the current study at the regional scale. Several objectives were set: 1) to evaluate the downscaling method for land surface temperature time series, 2) to identify regional thermal structure variations. We used weekly minimum and maximum surface temperature time series acquired by MODIS satellites at a spatial resolution of 1000 m and downscaled at 500 m using topographical variables. Two types of analyses were performed:

Agrovoltaic on vineyards: preliminary resuls on seasonal and diurnal whole-canopy gas exchange

Context and purpose of the study. Albeit standing as a fashionable research topic dual use of land as viti-voltaic still lacks of fundamental knowledge about whole canopy grapevine response to altered microclimate under panels vs open field conditions.

The influence of soil management practices on functional traits and biodiversity of weed communities in Swiss vineyards

Green cover in vine rows provides many ecological services, but can also negatively impact the crop, depending on the weed species. The composition of a vineyard weed community is influenced by many parameters. Ensuring an evolution of the vine row flora into a desired direction is therefore very complex. A key step towards this goal is to know which factors influence the establishment of the weed community and which types of communities are best suited for vineyards. In this study, we analysed the weed communities of several vineyards in the Lake Geneva region (379 botanical surveys on 117 plots), with the aim to highlight the links between soil management practices (chemical and mechanical weeding, mowing, mulching roll) and phytosociological profiles, biodiversity and selected functional traits (growth forms, life strategies, root depth). T