WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 1 - WAC - Posters 9 Vineyard management strategies adopted to mitigate the impacts of climate change affect the evolution of phenolics and color during bottle aging of Aglianico wines

Vineyard management strategies adopted to mitigate the impacts of climate change affect the evolution of phenolics and color during bottle aging of Aglianico wines

Abstract

In recent years several strategies have been proposed to cope with the effect of climate change on grape berry quality but only a few studies have dealt with the influence of management practices implemented in the field (e.g. irrigation,summer pruning, etc.), on the evolution of wines over time. 
Three irrigation treatments (I0,I50,I100) and three shoot trimming treatments (T0,T30,T75) were applied to Aglianico grapevines for two consecutive years(2017 and 2018), thus resulting in nine experimental samples, namely T0I0, T0I50, T0I100, T30I0, T30I50, T30I100, T75I0, T75I50, T75I100. The grapes were harvested and vinified separately, the vinifications were standardized and, after stabilization, the wines obtained were bottled and aged in controlled conditions. Apart from base parameters of grapes and wines, the phenolic composition of hydroalcoholic extracts derived from skins, grape seeds and wines were determined just after the end of vinification and after a long bottle aging (4 and 5 years). Likewise, the chromatic characteristics of wines were analysed as well.
Berry soluble solid content and alcohol concentration in wines turned out to be reduced by shoot trimming and deficit irrigationin eitherseason. However, these effects were enhanced in the first year of treatment. Severe shoot trimming treatment induced a significant decrease in the amount of tannins extractable from skin and seeds that reached a reduction of 83% in grapes under severe water deficit and severe shoot trimming in 2017. Both treatments determined a decrease in anthocyanins extractable from grape skins (never above 17%) determining a significant effect also on color intensity and hue in the wines of both the 2017 and 2018 vintages. The vintage drastically influenced the amount of flavanols and tannins but the effect of the trimming treatment was comparable. Although the great production of polymeric pigments over time in all wines, the effect detected on grapes and wines just after fermentation is still evident for color intensity,tannins and vanillin index after bottle aging.
The results obtained in this work showed that, apart from the expected effect on soluble solids of grapes and alcohol content of wines, a strong effect of shoot trimming on tannins and vanillin index was detected. If further confirmed by other experiments, the trimming could be an interesting practice for the production of wines with lower amounts of tannins and, likely, less astringent.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Antonio, Guerriero, Boris, Basile, Alessandro, Mataffo, Antonio, Dente, Martino, Forino, Antonio, Guerriero, Luigi, Picariello, Massimo, Di Renzo, Pasquale, Scognamiglio, Daniela, Strollo, Luigi, Moio, Angelita Gambuti

Presenting author

Antonio, Guerriero – University of Naples Federico II

University of Naples Federico II | Mastroberardino Spa

Contact the author

Keywords

Aglianico, vineyard strategies, climate change, bottle aging, phenolics

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.

Protected Designation of Origin (D.P.O.) Valdepeñas: classification and map of soils

The objective of the work described here is the elaboration of a map of the different types of vineyard soils that to guide the famers in the choice of the most productive vine rootstocks and varieties. 90 vineyard soils profiles were analysed in the entire territory of the Origen Denominations of Valdepeñas. The sampling was carried out in 2018 (June to October) by making a sampling grid, followed by photointerpretation and control in the field. The studied soils can be grouped into 9 different soil types (according to FAO 2006 classification): Leptosols, Regosols, Fluvisols, Gleysols, Cambisols, Calcisols, Luvisols and Anthrosols. A map showing the soil distribution with different type of soils has been made with the ArcGIS program. Regarding to the choice of rootstock, Calcisoles are soils with a high active limestone content, so the rootstocks used in these soils must be resistant to this parameter; Luvisols are deep soils with high clay content, so they will support vigorous rootstocks. Because the cartographic units are composed of two or more subgroups, with are associated in variable proportions, 9 different soil associations have been established; Unit 1: Leptosols, Cambisols and Luvisols (80%, 15% and 5% respectively); Unit 2: Cambisols with Regosols and Luvisols (40%, 30% and 30% respectively); Unit 3: Cambisols and Gleysols with Regosols (40%, 40% and 20% respectively); Unit 4: Regosols with Cambisols, Leptosols and Calcisols (40%, 30%, 15% and 15% respectively); Unit 5: Cambisols, Leptosols, Calcisols and Regosols (25% each of them); Unit 6: Luvisols with Cambisol and Calcisols (80%, 10% and 10% respectively); Unit 7: Luvisols and Calcisols with Cambisols (40%, 40% and 20% respectively); Unit 8: Calcisols with, Cambisols and Luvisols (80%, 10% and 10% respectively); Unit 9: Anthrosols. These study allow to elaborate the first map of vineyard soils of this Protected Designation of Origin in Castilla-La Mancha.

Crop water stress index as a tool to estimate vine water status

Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.

Enological potential of autochtonous grape cultivars from Castilla y León (Spain) to elaborate sparkling wines: polyphenolic and biogenic amines and amino acid composition of base wines

In white wines, Verdejo wine stands out because of its high content in total amino acids. The total content in biogenic amines was low in all wines analyzed and putrescine was the predominant biogenic amine.