WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 2 - WAC - Posters 9 Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Abstract

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and polyphenols. The reaction between acetaldehyde and wine polyphenols takes place through a nucleophilic attack of polyphenols on the protonated form of the aldehyde,  affording methyl methine-linked dimers of two different units of polyphenolic structures, among others. The numerous and complex reactions trigged by acetaldehyde markedly influence the evolution of red wines during aging. Although numerous studies aimed to determine the chemical nature of reaction products in model solution and real wines, data concerning a possible change in reactivity of red wines towards salivary proteins due to acetaldehyde reactions are not known. This piece of information can be of great relevance as the interaction of wine with saliva and the precipitation of salivary proteins is a major phenomenon responsible for wine astringency. 

In the present work, to investigate the changes in the precipitation of salivary proteins after interaction with red wine, the effects of increasing concentrations of acetaldehyde (0-190 mg/L) in two wines with different polyphenolic composition (Aglianico and Tintilia) were studied over a 90-day period.

The impact of acetaldehyde reactions on the reactivity towards salivary proteins was determined by SDS-PAGE analysis of proteins before and after the reaction and Saliva Precipitation Index (SPI) was measured. 

For both wines a significant precipitation of colored matter was observed as a function of acetaldehyde concentration.  In all wines, a decrease of SPI due to acetaldehyde addition was detected. However, a different trend was observed in the two wines. In particular, Aglianico showed a greater decrease. The SPI of either Aglianico or Tintilia significantly changed over time along with polymeric pigments content as suggested by HPLC and MS analyses.

Overall, the results showed that the reactions in which acetaldehyde is involved exert important effects in the interactions between polyphenolic compounds and salivary proteins.

Therefore, the management of the acetaldehyde is to be properly addressed throughout all the stages of the winemaking process.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Francesca Coppola, Martino Forino, Alessandra Rinaldi, Luigi Picariello, Massimo Iorizzo, Luigi Moio, Angelita Gambuti

Presenting author

Francesca Coppola – Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy

Department of Agricultural Sciences, Section of Vine and Wine Sciences, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy | Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Campobasso, Italy, University of Naples ‘Federico II’, Viale Italia, 83100 Avellino, Italy

Contact the author

Keywords

Acetaldehyde, Precipitation of Salivary Proteins, Red wine, Phenolic compounds

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Adaptive winemaking technologies using PIWI varieties in the wine industry of Ukraine

In recent years, the impact of climate change has been pushing agriculture toward the implementation of innovative production methods aimed at countering the negative consequences of climate change.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

First characterization of Torrontés Riojano in la Rioja, Argentina: impact of pruning intensity on vine vigor and grape production 

Pruning is one essential vineyard management activity whose main purpose is to regulate plant growth and vigour, modulating berry size, and consequently, wine quality. In Chilecito, La Rioja Province, Argentina, Torrontés Riojano stands as the only autochthonous variety for winemaking, yielding golden and aromatic berries and distinctive muscatel-tasting wines. This white cultivar, resulting from the natural cross between Moscatel de Alejandría x Criolla Chica, is traditionally trained in “parral” (horizontal trellis system), aimed to manage vigorous canopies. This project constitutes the first study on the influence of pruning intensity on Torrontés Riojano growth habit and berry quality.

UNTARGETED METABOLOMICS ANALYSES TO IDENTIFY A NEW SWEET COMPOUND RELEASED DURING POST-FERMENTATION MACERATION OF WINE

The gustatory balance of dry wines is centered on three flavors, sourness, bitterness and sweetness. Even if certain compounds were already identified as contributing to sweetness, some taste modifications remain largely unexplained1,2. Some empirical observations combined with sensory analyzes have shown that an increase of wine sweetness occurs during post-fermentation maceration³. This step is a key stage of red winemaking during which the juice is left in contact with the marc, that contains the solid parts of the grape (seeds, skins and sometimes stems). This work aimed to identify a new taste-active compound that contributes to this gain of sweetness.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.