WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Brettanomyces bruxellensis, born to live

Brettanomyces bruxellensis, born to live

Abstract

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

The capacity of the yeast to colonize supports was demonstrated, notably in wine. When biofilms developed on stainless steel chips were inoculated in wine, a considerable cell release from chip into wine was induced, followed by a growth of planktonic cells able to produce wine spoilage metabolites, such as 4-ethylphenol.

Besides the ability to form biofilm, B. bruxellensis is also able to display different cell morphologies, as demonstrated by microscopic observations. First, filaments were observed, playing a role in the structure of biofilm. For the first time, chlamydospore-like was described in this species, probably a potential additional resistance strategy. In addition, a polymorphism of vegetative cells was revealed. Using image analysis, we have shown that strains having different genotyping presented different morphology. Based on this link, a deep learning method was adapted to predict the genetic group of a strain from a simple microscopic observation.

Taken together, all of these features and strategies lead B. bruxellensis to persist in environment and to contaminate wine. Moreover, morphology of vegetative cells could be newly considered as indicator of a strain resistance capacity since the sensitivity to SO2 depend on the strain genetic group.

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Manon LEBLEUX, Emmanuel Denimal, Hany ABDO, Christian COELHO, Louise Basmaciyan, Hervé Alexandre, Stéphanie Weidmann, Sandrine ROUSSEAUX

Presenting author

Manon LEBLEUX – Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102 Dijon-France. Laboratoire VAlMiS-IUVV

Agrosup Dijon, Direction Scientifique, Appui A La Recherche, 26 Boulevard Docteur Petitjean, Dijon, F-21000, France, Laboratoire Valmis-IUVV | Université Bourgogne Franche-Comté, Agrosup Dijon, PAM UMR A 02.102 Dijon-France. Laboratoire PCAV | Université Bourgogne Franche-Comté, Agrosup Dijon, PAM UMR A 02.102 Dijon-France. Laboratoire Valmis-IUVV

Contact the author

Keywords

Brettanomyces bruxellensis – wine spoilage – biofilm – morphology – deep learning

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Understanding the physiological responses of Sauvignon blanc vines to sequential extreme weather events: implications for vineyard management in a changing climate

Climate plays a predominant role in vines’ growth and productivity and several environmental variables are already known to pose challenges to grapevine production and the horticultural industry as a whole. In this context, a number of extreme weather events already occurring and expected to occur in the next decades even more frequently and with higher magnitude results from current climate change scenario. The aim of this study was to examine the physiological responses of roots, leaves, and berries of Vitis vinifera cv. Sauvignon blanc to consecutive and combined stressors simulated in a semi-controlled environment.

Caractéristiques physiques et agronomiques des principaux terroirs viticoles de l’Anjou (France). Conséquences pour la viticulture

Une étude conduite dans le cœur du vignoble A.O.C. angevin, sur une surface d’environ 30.000 ha, a permis de caractériser et cartographier finement (levé au 1/12.500)

Spatial variability of the nutrient distribution in Jerez vineyard soils (Spain)

From a fertility standpoint, the vine has to extract from the soil mineral substances necessary for its existence. However, the amount of certain available nutrients does not always correspond to a proportional increase in quality.

Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

The effect of Partial Rootzone Drying (PRD) on fruit and wine composition has been investigated. At harvest, total anthocyanin and phenolic concentration of Shiraz and Cabernet Sauvignon fruit was either unaltered or increased by PRD relative to control irrigation over two seasons. Where there was an increase in anthocyanin concentration

Exploring grapevine water relations in the context of fruit growth at pre- and post-veraison

Climate change is increasing the frequency of water deficit in many grape-growing regions. Grapevine varieties differ in their stomatal behavior during water deficit, and their ability to regulate water potential under dry soil conditions is commonly differentiated using the concept of isohydricity. It remains unclear whether stomatal behavior, water potential regulation, and the resulting degree of isohydricity has a relationship with changes to fruit growth during water deficit. This study was conducted on four varieties (`Cabernet Franc`, `Semillon`, `Grenache`, and `Riesling`) subjected to both short-term, severe water deficit and long-term, moderate water deficit applied at both pre- and post-veraison.