WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability

Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability

Abstract

SO2 reaction with electrophilic species present in wine, including in particular carbonyl compounds, is responsible for the reduction of its protective effect during wine aging. In the present study, direct 1H NMR profiling was used to monitor the reactivity of SO2 with acetaldehyde under wine-like oxidation conditions. The dissociation of acetaldehyde bound SO2 was evidenced suggesting that released free SO2 can further act as an antioxidant. EPR and DPPH assays showed an increasing antioxidant capacity of wine with the increase in the concentration of acetaldehyde sulfonate. The presence of acetaldehyde sulfonate in wines was correlated with the overall antioxidant activity of wines. The first direct evidence of acetaldehyde bound SO2 dissociation provides a completely new representation of the long-term protection efficiency of SO2 during bottle aging.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Sofia Tachtalidou, Nicolas Sok, Franck Denat, Laurence Noret, Philippe Schmit-Kopplin, Maria Nikolantonaki, Régis D. Gougeon

Presenting author

Sofia Tachtalidou – UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France

UMR PAM Université de Bourgogne/Agro Sup Dijon, France | Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 21078 Dijon, France | UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France | Analytical BioGeoChemistry Research Unit, Helmholtz Zentrum München, and Technical University of Munich, Germany | UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France | UMR PAM Université de Bourgogne/Agro Sup Dijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France

Contact the author

Keywords

antioxidant activity-white wine-oxidation-chardonnay-aldehydes

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Phylloxera root infection drives vineyard water

Most of the rootstocks used in viticulture today are partly resistant against grape phylloxera (Daktulosphaira vitifoliae Fitch) and host phylloxera on the root system without conspicuous negative impacts on fruit production).

Soil humidity and early leaf water potential affected by water recharge before budbreak in cv. Tempranillo deficitary irrigated during the summer in the D. O. Ribera del Duero

The availability of water for irrigation is usually greater at the beginning of spring than in the following months, until the end of summer, in most regions of Spain.

CHARACTERISTIC EXTRACTION OF THE PHENOL COMPOUNDS IN KOSHU (VITIS VINIFERA CV.) WINE DURING THE MACERATION

Koshu is one of the indigenous grape variety that has been grown in Japan for more than one thousand years. Recent research showed that it has 70% of Vitis vinifera genes. In 2010, the Koshu variety was included in ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine’ and has further fueled its popularity in Japan. It is the most cultivated variety for winemaking in Japan.
Koshu berries have light purple skins. The variety is mainly used to produce white wines such as an aromatic wine and a wine produced by sur lie method although various styles are produced.

Empreinte carbone et environnementale du vin en France : chiffres d’impact et bonnes pratiques à mettre en œuvre

Increasing concentrations of greenhouse gases (GHGs) in the atmosphere due to human activities are leading to a rise in the average temperature of the atmosphere. among the scenarios established by the un’s intergovernmental panel on climate change (IPCC), only two enable us to achieve the minimum objective of the paris agreements signed at cop 21 in 2015: staying below +2°c after 2050. both scenarios forecast a rapid reduction in GHG emissions as early as 2025, thanks to strong international cooperation, the priority given to sustainable development and responsible consumer choices.

The plantation frame as a measure of adaptation to climate change

The mechanization of vineyard work originally led to a reduction in planting densities due to the lack of machinery adapted to the vineyard. The current availability of specific machinery makes it possible to establish higher planting densities. In this work, three planting densities (1.40×0.80 m, 1.80×1 m and 2.20×1.20 m, corresponding to 8928, 5555 and 3787 plants/ha respectively) were studied with four varieties autochthonous of Galicia (northwestern Spain): Albariño and Treixadura (white), Sousón and Mencía (red). The vines were trained in a vertical shoot positioning system using a single Royat cordon, and pruned to spurs with two buds each. Agronomic data (yield, pruning wood weight, Ravaz index) and oenological data in must were collected. The higher planting density (1.40×0.80 m) had no significant effect on grape yield per vine in white varieties, although production per hectare was much higher due to the greater number of plants. In red varieties, this planting density resulted in a significantly lower production per vine, compensated by the greater number of plants. In addition, it significantly reduced the Brix degree in the must of the Albariño, Treixadura and Sousón varieties, and increased the total acidity in the latter two and Mencía. It also caused an increase in extractable and total anthocyanins and IPT in red grapes. The effects of high planting density on grapes are of great interest for the adaptation of varieties in the context of climate change. In the future, it could be advisable to modify the limits imposed by the appellations of origin on the planting density of these varieties in order to obtain more balanced wines.