WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 A nutraceutical based on mediterranean diet with omega-3 fatty acid and resveratrol from grapewine counteracts ocular degenerative diseases

A nutraceutical based on mediterranean diet with omega-3 fatty acid and resveratrol from grapewine counteracts ocular degenerative diseases

Abstract

More recently, studies have shown that polyphenols could also prevent or improve vision in patients with ocular diseases and especially Age-related macular degeneration (AMD) which is an eye disease characterized by damage to the central part of the retina, the macula, and that affects millions of people worldwide. Despite therapeutic advances thanks to the use of anti-vascular endothelial growth factor (VEGF), many resistance mechanisms have been found to accentuate the visual deficit. In the present study, we explored whether a nutraceutical supplementation based on mediterranean diet associating polyphenols from red wine and omega-3 fatty acids was able to counteract laser-induced choroidal neovascularization (CNV) in mice and moleular mechanism involved in neaovasculariation of AMD. We highlight that nutraceutical formulation, Resvega®, composed of DHA/EPA and resveratrol, significantly reduced CNV in mice and a proteomic approach confirmed that Resvega® could counteract the progression of AMD through a pleiotropic effect targeting key regulators of neoangiogenesis in retina cells in vivo. These events were associated with an accumulation of resveratrol metabolites within the retina. A molecular analysis revealed that Resvega®, inhibited VEGF-A secretion in vitro by disrupting the dissociation of the VEGF-R2/Cav-1 complex into rafts and subsequently preventing MAPK activation. Moreover, DNA ChIP analysis reveals that this combination prevents the interaction between AP-1 and vegf-a and vegf-r2 gene promoters. Therefore, a supplementation of omega-3/resveratrol could improve the management or slow the progression of AMD in patients with this condition.

This work was supported by grants from the ANRT N°2016/0003, by a French Government grant managed by the French National Research Agency under the program “Investissements d’Avenir”, reference ANR-11-LABX-0021, the Conseil Régional Bourgogne, Franche-Comte (PARI grant) and the FEDER (European Funding for Regional Economic Development).

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Dominique Delmas, Flavie Courtaut, Virginie Aires, Niyazi Acar, Lionel Bretillon, Alessandra Scagliarini, Clarisse Cornebise, Ida Chiara Guerrera, Cerina Chhuon, Jean-Paul Pais de Barros, Céline Olmiere

Presenting author

Dominique Delmas – Inserm Research Center U1231, University of Bourgogne

Inserm Research Center U1231, University of Bourgogne | Inserm Research Center U1231, University of Bourgogne | Eye and Nutrition Research Group, Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon | Eye and Nutrition Research Group, Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon | Inserm Research Center U1231, University of Bourgogne | Inserm Research Center U1231, University of Bourgogne | Proteomics Platform Necker, Université de Paris | Proteomics Platform Necker, Université de Paris | Lipidomic Analytical Platform, 21000 Dijon | Laboratoires Thea, 12 Rue Louis-Blériot, 63000 Clermont-Ferrand

Contact the author

Keywords

Resveratrol, fatty acids, mediterranean supplementation, ocular disease

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies.

Mathematical modeling of fermentation kinetics: a tool to better understand interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in mixed cultures

Nowadays the use of Torulaspora delbrueckii is more and more common in winemaking. However, its behavior in presence of Saccharomyces cerevisiae is not always predictable.

Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

The purpose of the study was to monitor berry development as a function of site, vine water status and climate in order to improve our understanding of the role played by climate change on secondary metabolites relevant to wine quality.

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.