IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 UHPLC-HRMS analysis for the evaluation of formation and degradation of polysulfides in wine 

UHPLC-HRMS analysis for the evaluation of formation and degradation of polysulfides in wine 

Abstract

The contribution of sulfur compounds to wine aroma has been studied for several years, as their role can be either positive, contributing to the fruitiness and typicity of some white wines like Sauvignon blanc, or negative when related to off-flavours caused by H2S. Recently, H2S formation from degradation of polysulfides has gained interest in the wine sector as it could potentially lead to wine defects or quality reduction (1). It has been proposed that polysulfides can be formed upon oxidation of thiol compounds (for example glutathione and cysteine) with Cu2+ or elemental sulfur and could form a reservoir for H2S release post-bottling (2,3,4). Polysulfide formation has been demonstrated in several matrices including real wines (5,6,7), but the exact reaction mechanisms have not been proven yet. It has been suggested that both chemical and biochemical activities can play a role (8), which is a topic that is still under investigation.
In the present work we investigated the possible technological factors that could influence the formation of polysulfides. Furthermore, we proposed a new method using both liquid chromatography with mass spectrometry and parallel ion chromatography in order to study the degradation of single polysulfides and the formation of H2S, respectively.

METHODS
For the study we used ultra-high-performance liquid chromatography (UHPLC) coupled to hybrid quadrupole/high-resolution mass spectrometry (HRMS, Q-Orbitrap) for the detection, characterisation and accumulation of polysulfides. For the study of polysulfide degradation UHPLC was used with an on-line fraction collector (UHPLC-FC) in order to isolate the single compounds. After collection the sampled compound was kept at 30°C to promote degradation and injections were performed until complete degradation. For the detection of H2S Ion Chromatography (IC) was used. For the technological studies, wines fortified with varietal thiols were treated with Cu2+ or Ag+ and subjected to accelerated aging and different musts were fermented with different oenological yeasts in single vinifications.

RESULTS
Using UHPLC-FC and subsequent UHPLC-HRMS it was possible to follow single polysulfide degradation in time. The technological studies revealed treatment effects of post-fermentation treatments with Cu2+ and Ag+ and significant differences were found in polysulfide profiles of wines fermented with different oenological yeasts. These studies gave new insides in the formation and degradation mechanisms of polysulfides, which is considered relevant with regard to potential alterations of wine quality

DOI:

Publication date: June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Dekker Susanne¹*, Nardin Tiziana¹, Fedrizzi Bruno², Van Leeuwen Katryna², Roman Tomas¹ and Larcher Roberto¹

¹FEM-IASMA Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele All’adige TN
²School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1142, New Zealand

Contact the author

Keywords

polysulfides, oxidation, UHPLC-HRMS, reductive odours

 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Effect of post-harvest ozone treatments on the skin phenolic composition and extractability of red winegrapes cv Nebbiolo and Barbera

Wine industry is looking forward for innovative, safe and eco-friendly antimicrobial products allowing the reduction of chemical treatments in the grape defense and the winemaking process that can affect negatively the quality of the product. Ozone has been tested in food industry giving good results in preventing fungi and bacteria growth on a wide spectrum of vegetables and fruits, due to its oxidant activity and ability to attack numerous cellular constituents. Ozone leaves no chemical residues on the food surface, decomposing itself rapidly in oxygen. Gaseous ozone has been already tested for table grapes storage and on wine grapes during withering.

Winery by-products as potential bioresources for green valorization and sustainable biotechnological applications

The wine and distillery industries are among the most prominent sectors in EU agriculture, where 75% of grape production is dedicated to winemaking.

Valorization of wine lees for oenological interest by eco-responsible processes

Wine lees are the second most important wine by-product in terms of quantity after grape stalk and marc. During aging on lees, it is well known that wine lees yield compounds that act as antioxydant. However the chemical nature of the compounds involved in this behavior (except polyphenols and glutathione) has not yet been totally elucidated. The scarce knowledge of wine lees composition and their potential exploitation make them a promising candidate to obtain new antioxidant products to be used in winemaking. In this study, an eco-sustainable approach to obtain lees extracts exhibiting antioxidant capacity is proposed. Such extracts could be used in a global enological strategy of sulfites level reduction.