IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 UHPLC-HRMS analysis for the evaluation of formation and degradation of polysulfides in wine 

UHPLC-HRMS analysis for the evaluation of formation and degradation of polysulfides in wine 

Abstract

The contribution of sulfur compounds to wine aroma has been studied for several years, as their role can be either positive, contributing to the fruitiness and typicity of some white wines like Sauvignon blanc, or negative when related to off-flavours caused by H2S. Recently, H2S formation from degradation of polysulfides has gained interest in the wine sector as it could potentially lead to wine defects or quality reduction (1). It has been proposed that polysulfides can be formed upon oxidation of thiol compounds (for example glutathione and cysteine) with Cu2+ or elemental sulfur and could form a reservoir for H2S release post-bottling (2,3,4). Polysulfide formation has been demonstrated in several matrices including real wines (5,6,7), but the exact reaction mechanisms have not been proven yet. It has been suggested that both chemical and biochemical activities can play a role (8), which is a topic that is still under investigation.
In the present work we investigated the possible technological factors that could influence the formation of polysulfides. Furthermore, we proposed a new method using both liquid chromatography with mass spectrometry and parallel ion chromatography in order to study the degradation of single polysulfides and the formation of H2S, respectively.

METHODS
For the study we used ultra-high-performance liquid chromatography (UHPLC) coupled to hybrid quadrupole/high-resolution mass spectrometry (HRMS, Q-Orbitrap) for the detection, characterisation and accumulation of polysulfides. For the study of polysulfide degradation UHPLC was used with an on-line fraction collector (UHPLC-FC) in order to isolate the single compounds. After collection the sampled compound was kept at 30°C to promote degradation and injections were performed until complete degradation. For the detection of H2S Ion Chromatography (IC) was used. For the technological studies, wines fortified with varietal thiols were treated with Cu2+ or Ag+ and subjected to accelerated aging and different musts were fermented with different oenological yeasts in single vinifications.

RESULTS
Using UHPLC-FC and subsequent UHPLC-HRMS it was possible to follow single polysulfide degradation in time. The technological studies revealed treatment effects of post-fermentation treatments with Cu2+ and Ag+ and significant differences were found in polysulfide profiles of wines fermented with different oenological yeasts. These studies gave new insides in the formation and degradation mechanisms of polysulfides, which is considered relevant with regard to potential alterations of wine quality

DOI:

Publication date: June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Dekker Susanne¹*, Nardin Tiziana¹, Fedrizzi Bruno², Van Leeuwen Katryna², Roman Tomas¹ and Larcher Roberto¹

¹FEM-IASMA Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele All’adige TN
²School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1142, New Zealand

Contact the author

Keywords

polysulfides, oxidation, UHPLC-HRMS, reductive odours

 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Dimethyl sulfide transfer through wine closures during bottle aging: implications for wine aroma management

Dimethyl sulfide (DMS) is a volatile sulfur compound with a complex role in wine aroma, contributing both desirable and undesirable sensory characteristics depending on its concentration (1).

Assessing the potential of fermentative skin contact in white winemaking on phenolic, colour, and sensory traits

Fermentative maceration in white wine production, involving extended contact with grape skins and seeds, has gained interest in recent years. The impact of this winemaking technique on wine composition and sensory properties remains underexplored.

A first look at the aromatic profile of “Monferace” wines

Grignolino, is a native Piedmont grape variety which well represents the historical and
enological identity of Monferrato, a territory between Asti and Casale Monferrato, included in the World Heritage List designated by UNESCO (1).

Importanza del monitoraggio micro-meteorologico nella caratterizzazione del terroir

Le variabili meteorologiche e micro-meteorologiche ricoprono un importante ruolo sulla risposta vegeto-produttiva della vite e di conseguenza sulla qualità delle produzioni. Utilizzando una rete wireless di sensori sono stati monitorati i parametri meteorologici e micro-meteorologici di 4 vigneti del territorio toscano e in differenti condizioni di gestione agronomica.

Integrating RO concentrate in viticultural irrigation for sustainable urban water reclamation

Grapevines (Vitis vinifera L.) require precise irrigation to maintain yield and quality, and the increasing use of reclaimed desalinated water for irrigation raises concerns about the accumulation of reverse osmosis concentrate (ROC), a high-salinity byproduct with no sustainable disposal solution.