IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Abstract

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin. These secondary metabolites are the aromatic precursors fraction of grape which is liberated in wine during fermentation. Knowledge of their profile is often required to estimate the aromatic potential transferable to the wine and for chemotaxonomic aims (Nasi et al., 2008; Ferreira and Lopez, 2019).

In general, the methods used to study glycosidic aroma profile involve sample extraction and concentration by passage of large volumes of must or grape extract through a SPE cartridge (the stationary phases commonly used are 1-10 g of C18 or polystyrene-divinylbenzene), then the methanolic fraction eluted containing the glycoside compounds is carried to dryness, resolubilized using a citrate pH 5 buffer, and an enzymatic hydrolysis is carried out overnight to liberate the aglycones which are then analyzed by GC/MS. Main advantage of SPE is until 1000-fold concentration of sample which allows to detect also compounds present at low level but which can play important role in determining the organoleptic characteristics of wine. Usually, the selectivity of SPE towards the compounds studied is low, so performing quantitation by expressing the compounds as mg internal standard/kg grape provides accuracy acceptable for the aim of the study. On the other hand, SPE is laborious, needs long time and is hardly applicable in quality control laboratories. SPME is faster but the selectivity of fiber towards the analytes is often very different and to perform acceptable quantitative analysis it is essential the calculation of calibration curves. Unfortunately, just few standards of the grape aroma compounds are commercially available (Panighel et al., 2014).

In this study SPE-GC/MS and SPME-GC/MS methods are compared by performing analysis of a set of model standard solutions and grape must samples. The use of several internal standards allows to estimate recoveries of the analytes and calculation of corrective coefficients between the two methods. To have also information free of enzymatic artifacts, GC/MS results are crossed with profile of glycosidic aroma precursors determined by LC/QTOF analysis (Flamini et al., 2014).

The study is finalized to develop a quick SPME-GC/MS method which provides exhaustive and reliable qualitative and semi-quantitative information on the grape glycosidic aroma precursors

References

Nasi A., Ferranti P., Amato S., Chianese L. (2008). Food Chem. 110: 762-768
Ferreira V., Lopez R. (2019). Biomolecules 9(12): 818- doi:10.3390/biom9120818
Panighel A., Flamini R. (2014). Molecules 19: 21291-21309 doi:10.3390/molecules191221291
Flamini R., De Rosso M., Panighel A., Dalla Vedova A., De Marchi F., Bavaresco L. (2014). J. Mass Spec. 49(12): 1214-1222 doi:10.1002/jms.34411214

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Panighel Annarita¹, Fugaro Michele², Mazzei Raffaele Antonio², De Rosso Mirko¹, De Marchi Fabiola¹ and Flamini Riccardo¹

¹Council for Agricultural Research and Economics – Viticulture & Oenology (CREA-VE)
²Dipartimento dell’Ispettorato centrale della tutela della qualità e repressione frodi dei prodotti agroalimentari – ICQRF NORD-EST

Contact the author

Keywords

Glycosides, grape, aroma, mass spectrometry

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influence of wood chips addition during alcoholic fermentation on wine phenolic composition

This study investigates the effect of wood chips addition during the alcoholic fermentation on the phenolic
composition of the produced wines. A series of wood chips, originating from American, French, Slavonia
oak and Acacia were added at the beginning of wine alcoholic fermentation. Besides, a mixture consisting
of 50% French and 50% Americal oak chips were added during the experimentation. The wine samples
were analyzed one month after the end of malolactic fermentation, examining various chemical
parameters such as total anthocyanins, total phenolic content, tannins combined with protein (BSA) and
ellagitannin content.

Simulating the effect of heat waves on disease-resistant varieties

Agro-ecological transition and adaptation to climate change are the two major challenges facing modern agriculture.

Advancing wine authentication: non-invasive near-infrared spectroscopy and machine learning for vintage and quality traits assessment

Wine fraud, encompassing counterfeiting and adulteration, poses a significant threat to the wine industry, resulting in annual losses totalling billions of dollars.

Root development and the performance of grapevines in response to natural as well as man‐made soil impediments

The majority of soils used for wine and table grape production in South Africa are notoriously shallow, i.e. they are restricting root penetration.

Malbec wines from Argentina: influence of climate on aromatic components and Organoleptic profile. Is it possible to stablish regional identities?

Malbec grapes have been cultivated for 150 years in Argentina. In the last 20 years Argentinian Malbec wines have emerged as a commercial boom worldwide.