IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

Abstract

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples. This study aimed to explore the spectra of fresh grapevine shoots, leaves, and berries throughout the growing season for clustering and classification. Sampling was performed across two vintages (2019-2020; 2020-2021) from November to March. Five locations, seven cultivars, and 17 commercial vineyards were included. Collection of whole shoots, including leaves and grape bunches, were performed on a monthly basis. The fresh grapevine organs were analysed using three spectroscopy methods within 24-36 hours of sampling. Mid-infrared (MIR) and near-infrared (NIR), making use of a solid probe (NIR-SP) and a rotating sphere (NIR-RS), were investigated. The raw spectra were firstly investigated using principal component analysis (PCA) followed by a more novel chemometric approach, unsupervised
self-organising maps (SOM). PCA as well as unsupervised SOM showed the most considerable grouping based on organ type. Additionally, the unsupervised SOM showed separation trends based on phenological stage. Investigation of the datasets per organ with SOM showed separation based on the phenological stage for berries and shoots, as well as shoots clustering based on lignification. Supervised SOM were examined for classification based on the observed clustering per organ type, phenological stage, and lignification. The accurate prediction of organ at 90.3% was possible for the NIR-SP dataset for 2019-2021. Overlapping of various phenological stages were seen for the grape berry datasets, but prediction improved to 85.6% for the NIR-RS 2019-2021 dataset when certain phenological
stages were grouped together. Accurate predictions of lignified and unlignified shoots were also seen for the NIR-SP 2019-2021 and NIR-RS 2020-2021 datasets at 74.4% and 89.9% respectively. The possibility of using spectral variable selection to improve the supervised SOM predictions were explored and promising results obtained for certain datasets. Following variable selection with OPLS-DA and S-plots, the prediction of shoots and leaves improved by 14% for the NIR-RS 2020-2021 dataset. The prediction of lignified and unlignified shoots improved considerably to 92.3% for the NIR-SP 2019-2021 dataset and 95.9% for the NIR-RS 2020-2021 dataset. This study showed the extensive information available in infrared spectra of fresh grapevine organs and how the information could be used to achieve important clustering and classifications objectives

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Van Wyngaard Elizma¹, Blancquaert Erna¹, Nieuwoudt Hélène¹and Aleixandre-Tudo Jose Luis1,²

¹South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa
²Instituto de Ingeniería de Alimentos para el Desarrollo (IIAD), Departamento de Tecnologia de Alimentos, Universidad Politécnica de Valencia, Valencia, Spain

Contact the author

Keywords

Spectroscopy, grapevine organs, clustering, classification

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Study of varietal wines from the qualified origin denomination Rioja (Spain): analysis of wine colour, polysaccharides, polyphenols and biogenic amines and amino acides 

The cultivar with a greater oenological potential was ‘Monastel’, which showed overall better values than ‘Tempranillo’ in colour intensity, total polyphenol index, wine colour, total anthocyanins, resveratrol and gallic acid.

Mannoproteins from oenological by-products as tartaric stabilization and color agents in white and red wines

Climate change is drastically modifying grape composition and wine quality. As consequence, must and wines are becoming unbalanced, with high sugar concentration, increased alcohol content, lower acidity, excessive astringency, color instability and also a rise in the incidence of tartaric instability is being showed.

Response of Shiraz/101‐14 mgt to in‐row vine spacing

Knowledge of vine reaction to plant spacing under high potential soil conditions is restricted. This study was done to determine effects of vine spacing

Prefermentative CO2 saturation of grape must to obtaining white wines with low SO2 content

The objective this work has been study the possibility of partially or completely replacing sulphur in the winemaking of white wines through the use of the prefermentative saturation of musts with CO2.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.