IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Abstract

Climate change has become a major challenge for grape and wine production around the world. Grapegrowers and winemakers are not only affected by increasing temperatures and prolonged drought, but by vineyard exposure to bushfire/wildfire smoke, which can taint grapes and wine, causing significant revenue losses where unpalatable smoky, ashy characters render wine unsaleable. Considerable research has therefore been undertaken over the past ~20 years to understand the compositional and sensory consequences of grapevine exposure to smoke. 

Early studies measured guaiacol and 4-methylguaiacol as markers of smoke taint, because these compounds were oak volatiles (deriving from the thermal degradation of lignin during the toasting process of cooperage) known to impart smoke-related sensory attributes, and analytical methods existed for their quantitation in wine. Today, a suite of volatile phenols (guaiacols, cresols and syringols) are measured as smoke taint marker compounds – in both free and glycosylated forms.

Volatile phenols have been identified as constituents of smoke, and can be found in grapes immediately after smoke exposure, but are rapidly glycosylated, giving volatile phenol glucosides, gentiobiosides, diglycosides and rutinosides. During fermentation, some glycoconjugates are hydrolysed by yeast and/or enzymes, releasing volatile phenols into wine. However, a significant portion of the glycoconjugate pool remains after winemaking, and can contribute to the sensory perception of smoke taint due to in-mouth hydrolysis. Ideally, smoke taint risk assessments should therefore comprise determination of both volatile phenols and volatile phenol glycoconjugates, either directly (by GC-MS and LC-MS/MS, respectively) or indirectly (by GC-MS, before and after acid or enzyme hydrolysis).

The detection/evaluation of smoke taint is further complicated by the natural occurrence of some volatile phenols (and their glycoconjugates) in the fruit (and therefore wine) of some grape varieties, without smoke exposure, for example Shiraz and Petit Sirah. Research is therefore underway to establish the varietal, regional and temporal variation in naturally-occurring volatile phenol glycoconjugate concentrations, to better inform decision-making in the lead up to vintage, where vineyards are potentially impacted by smoke. 

This presentation will provide an overview of the chemistry of smoke taint, the analytical methods available for determination of smoke taint, and the latest strategies for mitigation and amelioration of smoke taint in grapes and wine. 

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Professor Kerry Wilkinson¹

¹ Department of Wine Science, Waite Research Institute, The University of Adelaide, Australia

Contact the author

Keywords

grapes, glycosylation, smoke taint, volatile phenols, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

The sensory definition of the aging bouquet of red Bordeaux wines has been shown to be structured around seven main aromatic nuances: “undergrowth”, “spicy” “truffle”, “fresh red- and black-berry fruits”, “liquorice”, “mint”, and “toasted” (1). Some of these descriptors are also used to describe the aromatic notes of old Champagnes (2) suggesting common volatile compounds between these two types of wine.

Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

The aim of the study was to study the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica (Spanish Oak) in comparison with barrels of Quercus petraea (French Oak) and Quercus alba (American Oak) as well as to determine their sensory impact.

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.

Reducing chemical use in vineyards. Evidence from the analysis of a national demonstration Network

High quantities of chemicals are applied in the vineyard for pest and disease control. Transition towards low pesticide viticulture is a key issue to improve sustainability. Winegrowers have to gradually change their practices to engage in this transition. This work aims at analysing the pesticide use evolution during transition towards low pesticide vineyards and identify some management options mobilized by winegrowers. To understand the diversity of pathways taken towards agroecological transition, we characterized different types of pesticide use evolution.