IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Abstract

Climate change has become a major challenge for grape and wine production around the world. Grapegrowers and winemakers are not only affected by increasing temperatures and prolonged drought, but by vineyard exposure to bushfire/wildfire smoke, which can taint grapes and wine, causing significant revenue losses where unpalatable smoky, ashy characters render wine unsaleable. Considerable research has therefore been undertaken over the past ~20 years to understand the compositional and sensory consequences of grapevine exposure to smoke. 

Early studies measured guaiacol and 4-methylguaiacol as markers of smoke taint, because these compounds were oak volatiles (deriving from the thermal degradation of lignin during the toasting process of cooperage) known to impart smoke-related sensory attributes, and analytical methods existed for their quantitation in wine. Today, a suite of volatile phenols (guaiacols, cresols and syringols) are measured as smoke taint marker compounds – in both free and glycosylated forms.

Volatile phenols have been identified as constituents of smoke, and can be found in grapes immediately after smoke exposure, but are rapidly glycosylated, giving volatile phenol glucosides, gentiobiosides, diglycosides and rutinosides. During fermentation, some glycoconjugates are hydrolysed by yeast and/or enzymes, releasing volatile phenols into wine. However, a significant portion of the glycoconjugate pool remains after winemaking, and can contribute to the sensory perception of smoke taint due to in-mouth hydrolysis. Ideally, smoke taint risk assessments should therefore comprise determination of both volatile phenols and volatile phenol glycoconjugates, either directly (by GC-MS and LC-MS/MS, respectively) or indirectly (by GC-MS, before and after acid or enzyme hydrolysis).

The detection/evaluation of smoke taint is further complicated by the natural occurrence of some volatile phenols (and their glycoconjugates) in the fruit (and therefore wine) of some grape varieties, without smoke exposure, for example Shiraz and Petit Sirah. Research is therefore underway to establish the varietal, regional and temporal variation in naturally-occurring volatile phenol glycoconjugate concentrations, to better inform decision-making in the lead up to vintage, where vineyards are potentially impacted by smoke. 

This presentation will provide an overview of the chemistry of smoke taint, the analytical methods available for determination of smoke taint, and the latest strategies for mitigation and amelioration of smoke taint in grapes and wine. 

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Professor Kerry Wilkinson¹

¹ Department of Wine Science, Waite Research Institute, The University of Adelaide, Australia

Contact the author

Keywords

grapes, glycosylation, smoke taint, volatile phenols, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Varietal volatile patterns of Italian white wines

Aroma diversity is one of the most important features in the expression of the varietal and geographic identity and sensory uniqueness of a wine. Italy has one of the largest ampelographic heritages of the world, with more than five hundred different varieties. Among them, many are used for the production of dry still white wines, many classified as Protected Designation of Origins and therefore produced in specific geographical areas with well-defined grape varieties. Chemical and sensory characteristics of the aroma of these wines have never been systematically studied, and the relative diversity has never been described and classified.

New acacia gums fractions: how their features affect the foamability of sparkling base wines?

When sparkling wine is served, the first attribute perceived is foam1. Bentonite is usually added to wine in order to cause particle flocculation

Climate ethnography and wine environmental futures

Globalisation and climate change have radically transformed world wine production upsetting the established order of wine ecologies. Ecological risks and the future of traditional agricultural systems are widely debated in anthropology, but very little is understood of the particular challenges posed by climate change to viticulture which is seen by many as the canary in the coalmine of global agriculture. Moreover, wine as a globalised embedded commodity provides a particularly telling example for the study of climate change having already attracted early scientific attention. Studies of climate change in viticulture have focused primarily on the production of systematic models of adaptation and vulnerability, while the human and cultural factors, which are key to adaptation and sustainable futures, are largely missing. Climate experts have been unanimous in recognising the urgent need for a better understanding of the complex dynamics that shape how climate change is experienced and responded to by human systems. Yet this call has not yet been addressed. Climate ethnography, coined by the anthropologist Susan Crate (2011), aims to bridge this growing disjuncture between climate science and everyday life through the exploration of the social meaning of climate change. It seeks to investigate the confrontation of its social salience in different locations and under different environmental guises (Goodman 2018: 340). By understanding how wine producers make sense of the world (and the environment) and act in it, it proposes to focus on the co-production of interdisciplinary knowledge by identifying and foreshadowing problems (Goodman 2018: 342; Goodman & Marshall 2018). It seeks to offer an original, transformative and contrasted perspective to climate change scenarios by investigating human agency -individual or collective- in all its social, political and cultural diversity. An anthropological approach founded on detailed ethnographies of wine production is ideally placed to address economic, social and cultural disruptions caused by the emergence of these new environmental challenges. Indeed, the community of experts in environmental change have recently called for research that will encompass the human dimension and for more broad-based, integrated through interdisciplinarity, useful knowledge (Castree & al 2014). My paper seeks to engage with climate ethnography and discuss what it brings to the study of wine environmental futures while exploring the limitations of the anthropological environmental approach.

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.

Methodology and zoning of A.O.C. natural soils. Example of “Pic Saint-Loup”

Les travaux menés, dans le cadre du programme départemental pour la connaissance et la valorisation des terroirs viticoles, sur l’aire A.O.C. Coteaux du Languedoc / Pic Saint-Loup ont permis d’appliquer à l’échelle d’une Appellation d’Origine Contrôlée (13 communes), une méthodologie d’étude axée sur les aspects sol/climat/topographie qui concourent à l’identification des terroirs naturels, facteurs de typicité des vins.