IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Abstract

Phosphonic acid and especially potassium dihydrogen phosphonate are widely used to restrain the ubiquitous pressure of grapevine downy mildew in viticulture. Nevertheless, phosphonic acid and its derivatives have been banned in organic viticulture in October 2013, because they have been classified as plant protection products since then. This development has fueled the need for analytical methods for sensitive phosphonate determination. Current routine analysis of phosphonic acid is usually performed by ion chromatography with conductivity detection (IC-CD), which is not always sufficiently sensitive and specific. Furthermore, the quick polar pesticide evaluation method (QuPPe) of the European Reference Laboratory in combination with LC-MS/MS is well established for most polar pesticides. However, in case of phosphonic acid, issues regarding mass transitions and poor chromatographic resolution, can occur. Therefore, we sought to evaluate a new method based on IC separation coupled with ICP-MS detection as an alternative for previously described methods. By coupling an ICP-MS to an IC, non-phosphorus-containing, coeluting substances can be eliminated and thus a higher specificity can be achieved. Hence, this contribution highlights the development and validation of an IC-ICP-MS based workflow for the robust, sensitive and reliable determination of phosphonic acid at low µg/kg levels in wine and must. This method is then compared to the previous detection by CD and the advantages and disadvantages of each are briefly described. Quantification limits are 20 µg/kg or lower with % RSDs typically

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Otto Sören1, May Bianca2 and Schweiggert Ralf1

1Department of Beverage Research, Chair Analysis and Technology of Plant-based Foods, Geisenheim University
2Department of Enology, Chair Wine and Beverage Chemistry, Geisenheim University

Contact the author

Keywords

polar pesticides, IC-ICP-MS, IC-CD, phosphonic acid, organic viticulture

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Evolution of oak barrels C-glucosidic ellagitannins

During oak wood contact, wine undergoes important modifications that modulate its organoleptic quality and complexity, including its aroma, structure, astringency, bitterness and color. Vescalagin and castalagin are the two main C-glucosidic ellagitannins found in oak wood used for wine aging wood but lyxose/xylose derivatives (grandinin and roburin e) and dimeric forms (roburins a,b, c and d) are also present. The presence of several hydroxyl groups in the ortho-positions at the periphery of the structure of the ellagitannin isomers allows these molecules to undergo oxidation or condensation reactions with other compounds.

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS

Rootstock effects on cv. Ugni blanc berry and wine composition

In the Cognac region in France, Ugni blanc is the most planted grape variety (98% of the 80 500 ha). This vine region is in expansion due to the success of the associated well-known brandy and the need of high grape yield to guarrantee the production of base wine for distillation. About 2 to 3000 ha are newly planted each year and rootstocks are one powerfull tool for vineyard adaptation to soil or climate change. As rootstocks ensure water and mineral nutrient supplies to the scion, it is important to better understand their effect on berry compostionnal parameters such as sugars and nitrogen compounds, which are the main precursors for fermentary aroma metabolites, the latter being quality markers for Cognac after distillation.

Recovery of olfactory capacity following a COVID-19 infection

In this video recording of the IVES science meeting 2021, Sophie Tempère (Institut des Sciences de la Vigne et du Vin – ISVV, Université de Bordeaux) speaks about the recovery of olfactory capacity following a COVID-19 infection. This presentation is based on an original article accessible for free on IVES Technical Reviews.

From grapevines to extreme environments … and back?

I performed my PhD in grapevine physiology under the supervision of Dr. H. Medrano, standing in the vineyards from pre-dawn to sunrise during many hot, wet and sunny days with my colleagues J.M.E. and J.B. I also spent many days and nights facing ticks year-round working in Mediterranean macchias with J.Gu. and M.M. Later I was able to supervise PhD students on grapevines – like A.P. and M.T. – and on Mediterranean vegetation – like J.Gal. With the incorporation to the group of M.R.-C. ‘the puzzle’ was completed and, combining the aforementioned studies, we could conclude (more than 20 years ago) things like: (1) stomatal conductance is the best proxy for ‘water stress’ in studies on photosynthesis; (2) steady-state chlorophyll fluorescence retrieves photosynthesis under saturating light; (3) photoinhibition is not a major photosynthetic limitation under water stress; (4) mesophyll conductance instead is; and (5) mesophyll conductance is a major driver of leaf water use efficiency.