IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The inhibition of hydrogen sulfide and methanethiol accumulation in wine by Cu(II): The influence of temperature on the duration of protection

The inhibition of hydrogen sulfide and methanethiol accumulation in wine by Cu(II): The influence of temperature on the duration of protection

Abstract

Hydrogen sulfide and methanethiol are recognised as two of the most significant contributors to reductive off-flavours in wine. Cu(II) in wine is known to interact with both sulfhydryl compounds, lowering the concentration of their aroma-active forms while transitioning Cu(II) to a sulfhydryl-bound form. Both hydrogen sulfide and methanethiol can form during the aging of wine in low oxygen conditions, such as during bottle aging, and
their production is known to be accelerated by wine storage temperature. Consequently, the protection offered by Cu(II) to inhibit accumulation of the reductive aroma compounds during bottle aging will be limited by the Cu(II) concentration at the bottling and of rate sulfhydryl compound formation. Although insights have been made on the typical rates of binding of Cu(II) in wines in cellar conditions (i.e., 14 °C), the impact of elevated storage
conditions is not certain, but likely to influence the duration of time that Cu(II) can inhibit reductive wine characters. This study determines the rates of Cu binding during the storage of wine at variable temperatures.

Four red and three white wines were bottled with low (< 0.2 mg/L) and high (0.6 mg/L) Cu(II) concentrations. The wines were stored at 14 °C and 40 °C and measured at 0, 1, 3, 7 and 12
months, and 0, 3, 5 and 12 days, respectively. The different forms of Cu were quantified by colorimetry for white wine, and stripping potentiometry for red wine, and enabled calculation of Cu(II) binding rates during wine aging and estimation of activation energies for binding. The formation of free and salt-releasable hydrogen sulfide and methanethiol were determined by gas chromatography with chemiluminescence detection.

The results showed that the rate of Cu(II) binding was dramatically higher at 40 °C than 14°C, with complete binding of Cu(II) in the order of 3 – 8 months and 1 – 5 days, respectively, for the wines bottled with high Cu(II). The relative order of Cu(II) binding rates amongst wines was temperature dependent, whereby Cu(II) binding rates became more uniform across wines when stored at the higher temperatures. This implied limitations in utilising high storage temperatures to predict Cu(II) binding at lower storage temperatures. The accumulation of the aroma active forms of sulfhydryl compounds, that is, the free hydrogen
sulfide and free methanethiol, only occurred after Cu(II) was converted to its bound form and then also required a further lag time. These results provide critical insights into the time-line of protection afforded to wines by Cu(II) against the emergence of reductive characters during bottle aging.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Zhang Xinyi1, Langford Kylie2 and Clark Andrew C1

1Gulbali Institute, Charles Sturt University, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
2Treasury Wine Estates, 97 Sturt Highway, Nuriootpa, SA 5355, Australia

Contact the author

Keywords

Copper, reduction, hydrogen sulfide, methanethiol, bottle-aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms.

The sensory profile of astringency: application on Sangiovese wines

One of the main sensory characteristics of red wine is astringency, which can be defined as drying, puckering and roughing of the oral cavity after the exposure to tannin-rich wines. Tannins are the main responsible for the intensity of the sensation as well for the qualitative aspects of astringency. However, the total intensity of the sensation is not sufficient to fully characterize red wine astringency. Thirty-three different subqualities (Gawel et al. 2001) had been generated to describe the complexity of this multi perceptual phenomenon, which includes both tastes, tactile, and flavor sensations. So, how to feel tannins during tasting? In this study, we used a sensory method that combine the training for astringency subqualities with touch-standards and the CATA questions, usually applied in consumer science, to evaluate the astringency subqualities of different typologies of Sangiovese: commercial and experimental wines. Sangiovese wine represents a good model for the study of astringency because it is generally characterized by a high content of low and high molecular weight proantocyanidins. Commercial wines differed for percentage of Sangiovese (80-100 %) grapes used in winemaking and for designation (Toscana TS, Chianti Classico CH, Chianti Riserva CR, Morellino di Scansano MS). The astringency profile of wines changed as the percentage of Sangiovese increased. Positive subqualities as velvet, soft, mouthcoat, and rich highly characterized the Sangiovese wine belonging to TS and CR designations. Moreover, the astringency subqualities related to blending or wood aging, represented the drivers of quality of commercial Sangiovese wines.

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.

Organic recycled mulches in sustainable viticulture: assessment of spontaneous plants communities and weed coverage

In recent years, developing more efficient and sustainable viticulture management has been essential due to the impact of climate change in semiarid regions. For this reason, the use of recycled organic mulching (ROM) in the vineyard has become an interesting strategy to cope with water stress, isolated soil from extreme temperatures and improving soil humidity, control the presence of weeds and therefore reduce the inputs of herbicides and improve soil fertility. This work aimed to analyse the effect of three different organic mulches [straw (S), grape pruning debris (GPD) and spent mushroom compost (SMC)] and two traditional soil management techniques [herbicide (H) and interrow (IN)] on weed coverage and the spontaneous plant communities’ presence. Data sampling was collected throughout the vine vegetative cycle of 2021 in La Rioja, Spain. The different soil management techniques had a clear effect on weed coverage and his development during the vine vegetative cycle. SMC and H were the treatments with the highest and the lowest coverage percentage, respectively. IN had a delayed weed emergence at the beginning of the vine vegetative cycle, but finally it reached maximum values nearby SMC. GPD and S had similar effects on weed emergence, reaching 25-30% of the maximum coverage values. A total of 29 herbaceous species were identified during the vegetative cycle, some of them very isolated and occasional. Principal component analysis (PCAs) showed a good association between spontaneous species and treatments, furthermore, specific species-treatment associations were found. Moreover, three clear groups of herbaceous communities were identified by cluster analysis. This study provides interesting information about the effect of different alternative soil management on herbaceous plant coverage and weed species communities which could contribute to making more sustainable viticulture.