IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Benefits and risks of the utilization of grape pomace as organic fertilizers

Benefits and risks of the utilization of grape pomace as organic fertilizers

Abstract

Rhineland-Palatinate is Germany’s largest wine growing region. The recently launched collaborative project in the frame of the ‘Carl-Zeiss-Stiftungs-Kooperationsfonds für Nachhaltigkeitsforschung’ focusses on the risk-benefit assessment of the use of grape pomace (GP) from the region ‘Pfalz’ in Rhineland-Palatinate as a natural fertilizer.GP contains high loads of bioactive compounds such as polyphenols and macro- as well as micronutrients which make GP an attractive, low-cost fertilizer [1,2]. On the other hand, GP may also contain residues of pesticides and mycotoxins. Their presence is undesirable in wine as well as in a potential fertilizer [3,4]. The application of high amounts of the above mentioned substances at once could negatively affect plant quality and microbial soil communities [5]. Therfore, the agricultural value of GP as a fertilizer could be limited by the transfer of these compounds into the soil. Up to date, little is known about the influence of GP constituents on the soil quality and processes, especially in a long-term exposure.In this project, we aim to determine the contents of polyphenols, mycotoxins, and pesticides in addition to the macro- and micronutrient content of GP from six different grape varieties. Furthermore, the effect on important soil parameters, such as nutrient availability, hydrodynaics, and microbiology will be analysed and evaluated.

References

[1] E. Nistor, A. Dobrei, E. Kiss, V. Ciolac, Journal of Horticulture, Forestry and Biotechnology 18, 141 (2014).
[2] C. Fuchs, T. Bakuradze, R. Steinke, R. Grewal, G.P. Eckert, E. Richling, Journal of Functional Foods 70, 103988 (2020).
[3] J.E. Welke, Current Opinion in Food Science 29, 7 (2019).
[4] X. Hou, Z. Xu, Y. Zhao, D. Liu, Journal of Food Composition and Analysis 89, 103465 (2020).
[5] C. Buchmann, A. Felten, B. Peikert, K. Muñoz, N. Bandow, A. Dag, G.E. Schaumann, Plant Soil 386, 99 (2015).

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sullivan Sadzik1, Korz Sven2, Buchmann Christian2, Richling Elke1 and Munoz Katherine2

1TU Kaiserslautern, Department of Chemistry, Division of Food Chemistry and Toxicology
2Universität Koblenz-Landau, Campus Landau, Germany

Contact the author

Keywords

soil, grape pomace, fertilizer, polyphenols, mycotoxins

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

The aim of this ongoing study is to evaluate the degree of adaptability of grapevine scion:rootstock combinations to different conditions of water constraint. Here we present results from the young vine development phase, using three scenarios of water constraint that were implemented from planting. The experimental vineyard was established in 2020 and the data presented will cover the 2021/2022 and 2022/2023 seasons. The experiment consisted of the cultivars Pinotage (PIN), Shiraz (SHI) and Cabernet Sauvignon (CAB), grafted on two rootstocks, Richter 110 (R110) and USVIT-8-7 (US87).

Биотехнология в системе оздоровления и размножения комплексно-устойчивых сортов винограда на Юге России

The production of certified grape planting material is one of the most important problems in the Russian federation. According to the scheme for the production of healthy grape planting material, before being introduced into in vitro culture, the source plants of each variety (Moldova, Augustin, Bart) were individually assessed for typical varietal characteristics and the presence/absence of symptoms of infection by pests.

Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Climate change constitutes an enormous challenge for humankind and for all human activities, viticulture not being an exception. Long-term strategic changes are probably needed the most, but growers also need to deal with short-term changes: summers that are getting progressively warmer, earlier harvest dates and higher pH in musts and wines. In the last 10-15 years, a relevant corpus of research is being developed worldwide in order to evaluate to which extent extreme canopy management operations, aimed at reducing leaf area and, thus, limiting the source to sink ratio, could be useful to delay ripening. Although extreme canopy management can result in relevant delays in harvest dates, longer term studies, as well as detailed analysis of their implications on carbohydrate reserves, bud fertility and future yield are desirable before these practices can be recommended.

Variability in the content of coarse elements in a viticultural plot in the Graves appellation: relationship with geophysical data

Il a été souvent démontré (Seguin, 1970), que les meilleurs terroirs sont ceux qui présentent pendant la période de maturation du raisin, une régulation et une limitation de l’alimentation hydrique de la vigne. Si on s’intéresse aux facteurs influençant ce régime hydrique, on constate le rôle prépondérant du taux d’éléments grossiers non poreux qui limitent la réserve utile du sol en diminuant le taux de terre fine. De plus, ces éléments grossiers jouent également un rôle au niveau du pédo-climat thermique car leur conductivité thermique et leur chaleur spécifique sont plus élevées que celles de la terre fine. Ainsi le sol se réchauffera et se refroidira plus rapidement (Saini et McLean, 1967), (Gras, 1994).