IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

Abstract

(+)-Catechin—laccase oxidation dimeric standards were hemi-synthesized using laccase from Trametes versicolor in a water-ethanol solution at pH 3.6. Eight fractions corresponding to eight potential oxidation dimeric products were detected. The fractions profiles were compared with profiles obtained with two other oxidoreductases: polyphenoloxidase extracted from grapes and laccase from Botrytis cinerea. The profiles were very similar, although some minor differences suggested possible dissimilarities in the reactivity of these enzymes. Five fractions were then isolated and analyzed by 1D and 2D NMR spectroscopy. The addition of traces of cadmium nitrate in the samples solubilized in acetone-d6 led to fully resolved NMR signals of phenolic protons, allowing the unambiguous structural determination of six reaction products, one of the fractions containing two enantiomers. These products were then analyzed in grape seed extracts and red wines (UHPLC-Q-Orbitrap MS). The different dimers had different fragmentation patterns according to their interflavan linkage position. Oxidation dimeric compounds had a specific fragment ion at m/z 393, missing for B-Type dimers fragmentations. A fragment ion at m/z 291 occurred and was specific for oxidation dimeric compounds with a C-O-C linkage. Higher level oxidation products had abundant specific fragments: m/z 425, 397 and 245. These fragmentations were useful to identify them in complex samples such as grape seed extracts and wines. Three grape varieties and three ripening stages were selected and the corresponding seed extracts were obtained. The analyses revealed an increasing trend for the oxidation markers during grape ripening. The analysis of Syrah wines (2018, 2014, 2010) showed a decreasing trend of these molecules during wine ageing which might be due to further oxidation.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Saucier Cedric1, Deshaies Stacy1, Le Guernevé Christine1,2, Sommerer Nicolas1,2, Garcia Lucas Suc François1, Mouls Laetitia1

1SPO, Université de Montpellier, INRAE, Institut Agro, UMR SPO, Faculté de Pharmacie, 15 avenue Charles Flahault, 34000 Montpellier, France
2INRAE, PROBE Research Infrastructure, PFP Polyphenol Facility, 34060 Montpellier, France

Contact the author

Keywords

wine, grape, polyphenol,oxidation, catechin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Integrating genomic prediction into grapevine breeding programs

Genomic selection (GS) has emerged as a transformative tool for accelerating breeding programs by predicting the genetic potential of individuals using genome-wide markers.

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci. 22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity.

Non Saccharomyces wine yeasts: emerging trends and challenges in winemaking

In the past, the contribution of non-Saccharomyces yeasts in winemaking has always been considered negative for their limited enological attitude if compared with Saccharomyces cerevisiae. In recent decades there has been a reevaluation of the role of non-Saccharomyces wine yeasts especially when used in combination and in support with S. cerevisiae (mixed fermentation). In this regard, selected non-Saccharomyces yeasts could be profitable used to give distinctive features, to enhance flavor and aroma complexity and to reduce the ethanol content of wines. Further emerging trends in the use of these yeasts are related to their role as bioprotectants and producers of health promoters compounds.

Using the fraction of transpirable soil water to estimate grapevine leaf water potential: comparing the classical statistical regression approach to machine learning algorithms

Weather uncertainty is forcing Mediterranean winegrowers to adopt new irrigation strategies to cope with water scarcity while ensuring a sustainable yield and improved berry and wine quality standards. Therefore, more accurate and high-resolution monitoring of soil water content and vine water status is a major concern. Leaf water potential measured at pre-dawn (PD) is considered to be in equilibrium with soil water potential and is highly correlated with soil water content at the soil depth where roots extract water.

Quantification of polysaccharides of variety Pomaces of the D.O.Ca Rioja

Pomace is one of the main residues generated by the wine industry and represents an environmental problem. Currently, there is a growing interest in the revaluation of these products because different bioactive compounds can be obtained from them, such as polyphenols, grape seed oils and polysaccharides. Red grape pomace can be an important source of polysaccharides, but they are currently little studied and even less with viable and environmental extraction processes (green extraction), such as flash extraction. The residual amount of the fraction rich in pectin (residual pulp) and component rich in hemicellulose in the pomace and the strength of association of the pectin with the cellulose-xyloglucan network depend on the degree of extractability of the polysaccharides in red winemaking and on the winemaking conditions.