IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of successive oxygen saturations of a grape juice, supplemented or not with laccase, on its color and hydroxycinnamic acids concentration

Influence of successive oxygen saturations of a grape juice, supplemented or not with laccase, on its color and hydroxycinnamic acids concentration

Abstract

Aim: This work studies how successive O2 saturations affects the color and hydroxycinnamic
acids concentration in the absence and presence of laccase from B. cinerea with the aim of better understanding the browning processes.

Materials and methods: Grapes of Muscat of Alexandria were harvested and pressed with a vertical press to extract 60% of their juice. Aliquots of 30 mL of this must were placed in 60 mL flasks equipped with a pill (PreSens Precision Sensing GmbH) for measuring oxygen by luminescence (Nomasense TM O2 Trace Oxygen Analyzer). These flasks were added or not with SO2 (50 mg/L) and with 2 UA/mL of laccase from B. cinerea (Giménez et al., 2022). All operations were carried out with a continuous nitrogen stream to protect the grape juice from air oxygen. The grape juices were then saturated in O2. The flasks were kept at 20±2 °C and O2 was monitored (Diéval et al., 2011). Once O2 was completely consumed, this operation was repeated twice to reach a total of three O2 saturations. Absorbances at 420, 320 and 280 nm were determined in all the samples. Hydroxycinnamic acids and GRP were analyzed by RP-HPLC-DAD-ESI-MS (Lago-Vanzela et al., 2013).

Results and discussion: Samples without SO2 and laccase consumed O2 after the 2st saturation in around 1 hour with an initial O2 consumption rate (OCR) of 0.262±0.009 mg of O2/minute. Surprisingly, no significant differences were found in the OCR of the samples supplemented with laccase in the 1st saturation (0.266±0.075). However, the OCR decreased significantly for the 2nd and 3rd saturations in the case of the samples without laccase (0.128±0.003 and 0.101±0.011 respectively) whereas no significant decrease was observed when laccase was present (0.268±0.013 and 0.238±0.049 respectively). The supplementation with SO2 almost completely inhibited OCR in both cases, without and with laccase (0.006±0.002 and 0.011±0.003 respectively). The A420 nm (yellow color) increased after each saturation and this augmentation was significant higher in the samples supplemented with laccase. In contrast, the A320 nm (hydroxycinnamic acids) and A280 nm (total phenolic compounds) do the opposite. Finally, caftaric and cutaric acids and in a minor extent fertaric acid concentrations decreased after each saturation and this decrease was very similar in the samples supplemented or not with laccase. In contrast, the samples supplemented with SO2 hardly showed changes in the different absorbances or in the hydroxycinnamic acids.

Conclusions:

These results confirm that SO2 is very effective to prevent browning even in the presence of laccase. This data also indicate that the presence of laccase provokes higher browning even consuming the same O2 than without its presence, probably because can use more substrates than natural grape tyrosinase

References

Diéval, J.B., Vidal, S., & Aagaard, O. (2011). Measurement of the oxygen transmission rate of co-extruded wine bottle closures using a luminescence-based technique. Packaging Technology and Science, 24, 375–385.
Giménez, P., Anguela, S., Just-Borras, A., Pons-Mercadé, P., Vignault, A., Canals, J.M., Teissedre, P.L., Zamora, F. (2022) Development of a synthetic model to measure browning caused by laccase activity from Botrytis cinerea. LWT – Food Science and Technology 154 (2022) 112871. 
Lago-Vanzela, E.S., Rebello, L.P.G., Ramos, A.M., Stringheta, P.C., Da-Silva, R., García-Romero, E., Gómez-Alonso, S. and Hermosín-Gutiérrez, I. (2013) Chromatic characteristics and color-related phenolic composition of Brazilian young red wines made from the hybrid grape cultivar BRS Violeta (‘BRS Rúbea’ × ‘IAC 1398-21’). Food Research International 54, 33–43.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Zamora Fernando 1, Giménez Pol1, Just-Borras Arnau1, Solé-Clua Ignasi1, Pérez-Navarro José2, Gombau Jordi1, Gómez-Alonso Sergio2 and Canals Joan Miquel1

1Departament de Bioquímica i Biotecnologia, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain
2Universidad de Castilla-La Mancha, Instituto Regional de Investigación Científica Aplicada. Ciudad Real, Spain

Contact the author

Keywords

Grape Juice, Oxidation, Browning, Laccase, Hydroxycinnamic Acids

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effects of graft quality on growth and grapevine-water relations

Climate change is challenging viticulture worldwide compromising its sustainability due to warmer temperatures and the increased frequency of extreme events. Grafting Vitis vinifera L.

Current climate change in the Oplenac wine-growing district (Serbia)

Serbian autochthonous vine varieties Smederevka (for white wines) and Prokupac (for rosé and red wines) are the primary representatives of typical characteristics of wines and terroir of numerous wine-growing areas in Serbia. In the past, these varieties were the leading vine varieties, however, as the result of globalization of winemaking and the trend of consumption of wines from widely prevalent vine varieties, they were replaced by introduced international varieties. Smederevka and Prokupac vine varieties are characterized by later time of grape ripening, and relative sensitivity to low temperatures. Climate conditions can be a restrictive factor for production of high-quality grapes and wine and for the spatial spreading of these varieties in hilly continental wine-growing areas.
This paper focuses on the spatial analysis of changes of main climate parameters, in particular, analysis of viticultural bioclimatic indices that were determined for the purposes of viticulture zoning of wine-growing areas in the period 1961-2010, and those same parameters determined for the current, that is, referential climate period (1988-2017). Results of the research, that is, analysis of climate changes indicate that the majority of examined climate parameters in the Oplenac wine-growing district improved from the perspective of Smederevka and Prokupac vine varieties. These studies of climate conditions indicate that changes of analyzed climate parameters, that is, bioclimatic indices will be favorable for cultivation of varieties with later grape ripening times and those more sensitive to low temperatures, such as the autochthonous vine varieties Smederevka and Prokupac, therefore, it is recommended to producers to more actively plant vineyards with these varieties in the territory of the Oplenac wine-growing district.

A methyl salicylate glycoside mapping of monovarietal Italian white wines.

Among the main plant secondary metabolites, glycosides have a key-role in wine chemistry. Glycosides are non-volatile complex composed of a non-sugar component (aglycone) bound to one or more carbohydrates.

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

Identification of aroma markers in amarone wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release. The present work aims at characterizing the aroma composition of Amarone and to elucidate the relationships between chemical composition and sensory characters. The analysis of 17 Amarone commercial wines from the same vintage (2015) was carried out by means of Gas Chromatography-Mass Spectrometry (GC-MS) and extracted by Solid Phase Extraction (SPE) and Solid Phase Micro Extraction (SPME). In addition, the sampled wines were subjected to a sensory evaluation in the form of sorting task.RESULTS: 70 volatile compounds were successfully identified and quantified, 30 of which were present in concentrations above their odor thresholds in all the samples. Using the odor activity value (OAV), the compounds that potentially contribute to Amarone perceived aroma are b-damascenone, ethyl and isoamyl acetate, ethyl esters (hexanoate, octanoate, butanoate, 3-methybutanoate), 4-ethyl guaiacol, 3-methylbutanoic acid, dimethyl sulfide (DMS), eugenol, massoia lactone, 1,4-cineol, TDN, cis/trans-whisky lactone. In certain samples, high OAVs were also observed for 4-ethyl phenol and 1,8-cineole.Results from the sorting task sensory analysis showed three clusters formed.