IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

Abstract

Extraction of anthocyanins and tannins have been studied for two grape varieties, Carignan and Grenache, two maturation levels and two vintages, in model solutions and in wines, using UHPLC-MS/MS in the MRM mode  and HPSEC. The cell wall polysaccharides were characterized using the neutral sugar composition after depolymerization and the comprehensive microarray polymer profiling (CoMPP).
Carignan was richer than Grenache in anthocyanins for both years. Berry anthocyanins were mainly non acylated and para coumaroylated.  In Carignan, p.coumaroylated were found in higher quantities than non acylated. Maturation led to an increase of quantities of non acylated anthocyanins for Carignan and Grenache, and a slight decrease of p.coumaroylated for Carignan. No significant difference of their tannin composition was observed.
The extraction yields of non acylated anthocyanins in model solutions and in wines were higher than those of tannins. Percents of recoveries of p.coumaroylated anthocyanins were lower than non acylated anthocyanins and tannins, and lower in model solutions than in wine. Recoveries were higher in 2019 than in 2018.
Correlations were observed between non acylated, p.coumaroylated and tannins concentrations in model solutions and wines, not in berries. P.coumaroylated anthocyanins recoveries were lower in model solutions than in wines. The cell wall structure was related to the mechanism of extraction. Extraction of anthocyanins and tannins was correlated to high levels of homogalacturonans partially esterified in the skins (e.g. LM19-CDTA-skin) but low levels in the pulps, and by low levels of extensins in the skin(e.g. JIM11-NaOH-pulp) but high levels in the pulps. Arabinose % was correlated positively, mannose % and glucose % negatively to the recovery of all anthocyanins and tannins in model solution, to p.coumaroylated anthocyanins only in wines. These results trigger questions.
Firstly, the lower recovery of p.coumaroylated anthocyanins may be due to the hydrophobicity of the coumaroyl unit, modifying their interactions with other polyphenols and/or with the cell walls.
Secondly, p.coumaroylated anthocyanin recoveries were very different in model solutions and in wines. Pulp, seeds and/or yeasts present in wines should play a role in their extractibility.
Thirdly, anthocyanins/tannins extracted in model solutions/wines were correlated to several parameters describing the cell walls, among them their compositions measured by the neutral sugars and their structures measured by the CoMPPs. To conclude, this study confirms with more details the major role that play cell walls in the extraction of anthocyanins and tannins.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Boulet Jean-Claude1, Abi-Habib, Carrillo Stéphanie, Roi Stéphanie, Verbaere Arnaud, Meudec Emmanuelle, Rattier Anaïs, Ducasse Marie-Agnès, Jorgensen Bodil, Hansen Jeanett, Le Gall Sophie, Poncet-Legrand Céline, Cheynier Véronique, Doce Thierry and Verneht Aude

1SPO, INRAE, Univ.Montpellier, Institut Agro Montpellier Supagro, 34070 Montpellier, Campus Supagro, Bâtiment 28, 2 Place Viala, 34060 Montpellier cedex 2, France
2INRAE, PROBE infrastructure, PFP facility, 34070 Montpellier, Campus Supagro, Bâtiment 28, 2 Place Viala, 34060 Montpellier cedex 2, France

Contact the author

Keywords

extraction, polyphenols, polysaccharides, comprehensive microarrray polymer profiling, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

The impact of nutrition label formats on wine consumer preferences

Recent regulations concerning alcoholic beverages have prompted producers to revise their product labels to incorporate nutritional information. In this context, qr codes containing such information, known as e-labels, are now being employed on wine labels for the first time.

Southern Oregon Ava landscape and climate for wine production

The Southern Oregon American Viticultural Area (AVA) consists of the Applegate Valley, Rogue Valley, Umpqua Valley, Elkton Oregon, and Red Hills of Douglas County sub-AVAs (Figure 1) that are some of the many winegrape producing regions found within the intermountain valleys along the west coast of the United States.

Dry leaf hyperspectral reflectance predicts leaf elemental composition in grafted hybrids

Elemental composition, measured as the concentrations of different elements present in a given tissue at a given time point, is a key indicator of vine health and development. While elemental composition and other high-throughput phenotyping approaches yield tremendous insight into the growth, physiology, and health of vines, costs and labor associated with repeated measures over time can be cost-prohibitive. Recent advances in handheld sensors that measure hyperspectral reflectance patterns of leaf tissue may serve as an affordable proxy for other types of phenotypic data, including elemental composition. Here, we ask if reflectance patterns of dried Chambourcin leaf tissue from an experimental grafting vineyard can predict the known elemental composition of those leaves.

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: typeofthepublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Study of Spanish wine sensory analysis data over a 3-year period

This study presents an investigation based on sensory analysis data of Spanish wines with geographical indications collected over a three-year period. Sensory analysis plays a crucial role in assessing the quality, characteristics, and perception of wines. The trained tasting panel at Dolmar Laboratory, accredited for objective sensory evaluation of wines since 2016, has been tasting over 5000 wines. However, it is since 2021, when a computer application for tastings was developed, that the digitalization of data allows for detailed statistical analysis of the results.

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.

Crowdsourced the assessment of wine rating: professional wine competition rating vs vivino rating

We evaluate wine ratings by comparing data from two crowdsourcing platforms – Vivino, which aggregates the opinions of a large number of wine lovers, and Global Wine Medal Rating, which aggregates the scores from more than 1030 international wine competitions since 2020.

Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

The use of hybrids in viticulture is one of the alternatives for sustainable production in hot and rainy regions during grapevine maturation. This sustainable production concerns the reduction of pesticide use, adaptation to climate and control of vine decline. The SR 0.501-17 wine grape hybrid, developed in the grapevine program of the Agronomic Institute of Campinas (IAC), is characterized by producing white grapes with small spherical berries with seeds. The agronomic characterization of this hybrid, especially in different climatic conditions, as well as the evaluation of its performance in winemaking are necessary. The objective of this work was to characterize the duration and thermal requirements of the different phenological stages and the influence of rainfall on the physicochemical characteristics of the must in two contrasting climate regions of the State of São Paulo.

EUGENOL AS QUALITY MARKER OF WINES AND SPIRITS FROM HYBRID VINES: IMPACT OF DIFFERENT WINEMAKING AND DISTILLATION PROCESSES

Eugenol, widely spread in various plants notably cloves, basil and bay, was identified too in wines from hybrid grapes without contact with oak wood. This aromatic molecule presents a strong spicy note of clove and also antifongic properties. Eugenol was described as an endogenous compound of Baco blanc, from the grapes to the spirits of Armagnac area. Moreover, this compound is a chemical marker of Baco blanc products quality.
Influences of harvest time and different winemaking processes (settling, use of enzymatic preparations, lees content and stock time before distillation) on Baco blanc wine eugenol contents were explored using a two-levels full factorial Design of Experiments (DoEs).