IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Anthocyanin composition and sensory properties of wines from Portuguese and international varieties cultivated in a hot and dry region of Portugal

Anthocyanin composition and sensory properties of wines from Portuguese and international varieties cultivated in a hot and dry region of Portugal

Abstract

The study of anthocyanins in wines and grapes has been the subject of numerous research works over the years due to their important role in enology regarding their contribution to wine sensory properties. Anthocyanins confer colour to red wine and contribute to other organoleptic characteristics due to interactions with other polyphenols, proteins and polysaccharides. This group of compounds lends itself to varietal characterization; they are substances that, as secondary metabolites, are directly related to the genetic component. The environmental characteristics, namely the temperature and the water status under which the development of the berries takes place have a great influence on the quantity and composition of these compounds.The objective of this work was to study varietal differences in anthocyanins composition and the relation with some sensory properties, within selected international and Portuguese grape varieties cultivated in Alentejo region, one of Portugal largest quality wine producing regions but very hot and dry and extremely susceptible to climate change. The grape varieties were selected based on previous studies on their ecophysiological response and adaptability to severe environmental conditions and heatwaves. The grape varieties studied were 14 namely, Petit Verdot, Marselan, Merlot, Touriga Franca, Syrah, Vinhão, Bobal, Preto Martinho, Corropio, Trincadeira, Tinta Caiada, Alfrocheiro, Alicante Bouschet e Touriga Nacional. The varietal wines samples were evaluated by sensory analysis using quantitative descriptive analysis and the anthocyanins analysis by high-performance liquid chromatography-diode array (HPLC-DAD).The principal component analysis (PCA) results based on the correlation matrix between different anthocyanin groups according to acylation types, (nonacylated, acetate derivatives, coumarate derivatives and caffeoate derivatives) and total anthocyanins, showed that the first two principal components explained 98.24% of total variance. The PCA  show the discrimination of Touriga Nacional, Syrah, and Vinhão wines, that have high positive scores in PC1 strongly associated with nonacylated and total concentration of anthocyanins, related to their higher concentration and richer composition of anthocyanins, in the other hand wines from the varieties Preto Martinho, Bobal e Corropio are located on the opposite side of PC1, and they presented lower anthocyanins concentration. These results are in agreement with sensory analysis regarding specific sensory attributes such as astringency and colour quality.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martins Patrícia1, Caldeira Ilda1, Baoshan Sun2, Damásio Miguel1, Egipto Ricardo1 and Silvestre José1

1Instituto Nacional de Investigação Agrária e Veterinária, IP
2Instituto Nacional de Investigação Agrária e Veterinária, IP, Shenyang Pharmaceutical University

Contact the author

Keywords

wine, anthocyanins, climate change, sensory profile, grape varieties

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Evolution of acetaldehyde concentration during wine alcoholic fermentation: online monitoring for production balances

During alcoholic fermentation, acetaldehyde is the carbonyl compound quantitatively the most produced by yeasts after ethanol. The dynamics of acetaldehyde production can be divided into 3 phases. Early formation of this compound is observed during the lag phase at the beginning of fermentation before any detectable growth [1].

Insulative effects of vine shelters may impact growth potential and cold hardiness of young vines

Context and purpose of the study. The seasons immediately following planting are key growth stages where young vines are particularly susceptible to various forms of damage.

The challenge of viticultural landscapes

Le monde vitivinicole est de plus en plus concerné par la question paysagère : l’enjeu est de taille puisqu’il s’agit de la survie de l’image positive dont bénéficient les Appellations d’Origine Contrôlée. Les paysages sont composés d’éléments qui renvoient à des références socioculturelles fortes, susceptibles de modeler l’image d’un produit et d’en déterminer à notoriété et le prix. Dans un monde médiatisé comme le nôtre, le visuel construit l’arrière-plan des représentations mentales associées à toute marchandise ; et pour les aliments, produits de la terre, ce visuel est forcément paysager.

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks.

Soil Temperature and Climate Change: Implications for Mediterranean Vineyards 

More frequent and extreme temperatures and droughts pose challenges to the wine sector in Mediterranean Europe. Soil is crucial to sustain the equilibrium of ecosystems, economic growth and people’s prosperity worldwide. In viticulture, soils are a major component of the terroir and do influence vine’s growth, yield and berry composition. Soil temperature (ST) affects soil´s physical, chemical and biological processes and also crop growth. The impact of ST becomes even stronger when dealing with row crops such as grapevine, when considering the increased exposition to radiation. However, the impact of ST on crop performance remains poorly described, especially for extreme climatic conditions.