IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

Protein extracts of the Andean pseudocereals quinoa and kiwicha as alternatives for the fining of wine phenolics.

Abstract

INTRODUCTION: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining. Proteins extracted from cereals, potatoes, and legumes have been proposed as effective fining agents, but only those from pea and potatoes have been approved for their use in wine. This work aimed at determining the fining ability of the Andean pseudocereals quinoa (Chenopodium quinoa Willd.) and kiwicha (Amaranthus caudatus L.) protein extracts (QP and KP respectively), compared to commercial fining agents, on red wines.

METHODOLOGY: The trials compared the performance of QP and KP, two potato protein extracts and gelatin, at two different contact times (48 and 96 h), on Cabernet Sauvignon wine. The turbidity was measured with a Hanna HI 83749 turbidimeter and results were expressed as NTU. Total phenolics (1), precipitable tannins (2), catechins (3), polymeric pigments (4), and CIELab parameters were determined spectrophotometrically. Low molecular weight phenolics were analyzed by HPLC (5).

RESULTS: QP and KP were effective in reducing the turbidity of the studied wine in a similar way than commercial fining agents. Treatments with QP and KP reduced total phenolics and total tannins similarly than commercial fining agents. Most of the treatments did not affect the flavan-3-ol content of wines. Our results allow us to hypothesize that the fining agents used are more likely to bind high molecular weight tannins than to those of low molecular weight or monomers. In some cases, treatments with QP and KP slightly decreased the color intensity similarly to other vegetable proteins.

CONCLUSIONS:

The fining ability of quinoa and kiwicha protein extracts has been studied for the first time. Results showed that QP and KP could be used as effective fining agents for
red wines as alternatives to animal proteins such as gelatin. The use of QP and KP as fining agents has the advantage of being non-allergenic products.

REFERENCES:

1. Waterhouse AL. Determination of Total Phenolics. In: Current Protocols in Food Analytical Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2003.
2. Mercurio MD, Dambergs RG, Herderich MJ, Smith PA. High Throughput Analysis of Red Wine and Grape PhenolicsAdaptation and Validation of Methyl Cellulose Precipitable Tannin Assay and Modified Somers Color Assay to a Rapid 96 Well Plate Format. Journal of Agricultural and Food Chemistry. 2007 Jun 1;55(12):4651–7.
3. de Beer D, Harbertson J, Kilmartin PA, V R, T B, Adams DO, et al. Phenolics: A comparison of diverse analytical methods. American Journal of Enology and Viticulture. 2004 Sep;55:389–400.
4. Harbertson JF, Picciotto EA, Adams DO. Measurement of Polymeric Pigments in Grape Berry Extract sand Wines Using a Protein Precipitation Assay Combined with Bisulfite Bleaching. American Journal of Enology and Viticulture [Internet]. 2003;54(4):301–6. Available from: https://www.ajevonline.org/content/54/4/301
5. Gómez-Alonso, Sergio, Esteban García-Romero, and Isidro Hermosín-Gutiérrez. “HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence.” Journal of Food Composition and Analysis. 2007; (20): 618-626.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pino Liudis1, Peña-Martínez Paula A.1 and Laurie V. Felipe1

1Facultad de Ciencias Agrarias, Universidad de Talca.

Contact the author

Keywords

Wine, plant protein, fining, tannin, phenolics

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Can wine competition awarded points be correlated with wine chromatic and aromatic composition?

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are complexity, balance, color and intensity. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste. Phenolic compounds are the main responsible for wine color, being anthocyanin and tannins the most determinant compounds in red wines. In addition to color, wine aroma is another important attribute linked with quality and consumer preferences.

Potential deacidifying role of a commercial chitosan: impact on pH, titratable acidity, and organic acids in model solutions and white wine

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps.

What is the fate of oxygen consumed by red wine? Main processes and reaction products

Oxygen consumed by wine is used to oxidize sulfur dioxide and ethanol to form acetaldehyde wine oxygen consumption rate (OCR) was negatively correlated with the initial acetaldehyde level.

Adaptation et expression de l’encépagement et mode de conduite en différents terroirs de la région du Douro/vin de Porto

Ce travail a pour objet l’analyse des résultats agronomiques obtenus sur trois unités expérimentales du Centre d’Etudes Vitivinicoles du Douro (CEVDouro), localisées dans des écosystèmes différenciés de la Région du Douro/Vin de Porto, à différentes altitudes (130, 330 et 520 mètres) et à des expositions diversifiées (SE, N et W).

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France.