IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Abstract

Aged red wines possess phenolic composition very different from young ones due to the transformations among native grape phenolics and the formation of new polymeric polyphenols during aging process. In this work, Syrah red wines were made by different winemaking technologies, i.e., traditional fermentation on skin (total 7 days of maceration), prolonged maceration with addition of extra skins at the end of traditional fermentation (total 14 days of maceration) and prolonged maceration with addition of extra stems at the end of traditional fermentation (total 14 days of maceration). After 8 years of ageing in bottle, the structural composition of polymeric polyphenols in these wines was comprehensively analysed through different degradation methods (hydrochloric acid hydrolysis, NaOH hydrolysis and Benzyl mercaptan hydrolysis), followed by HPLC-FT-ICR-MS, HPLC/UPLC-MS analysis. The results showed that the molecules of polymeric polyphenols in the aged red wines were composed of not only proanthocyanidins but also anthocyanins, amino acids and phenolic acids. The percentages of the constitutive units of the polymeric polyphenol molecules in these wines varied considerably, being catechin (7.1 – 14.9%), epicatechin (74.5 – 78.2%), epicatechin-3-O-gallate (5.8 – 12.2%), amino acids (0.7 – 1.5%), phenolic acids (0.0 – 0.9%) anthocyanins (0.1 – 0.4%) and epigallocatechin (0.7 – 4.7%),  depending on the type of the winemaking technologies. Catechin, epicatechin and epicatechin-3-O-gallate were presented as both terminal and extension units, with the latter predominant, while amino acids, phenolic acids and anthocyanins were found to be presented exclusively as terminal units and epigallocatechin was found to be presented exclusively as extension units. Comparing with the wine made by traditional fermentation on skin, the lower phenolic acids and anthocyanins units was found in the wine made by prolonged fermentation/maceration with skin and with stem. The prolonged fermentation/maceration with skin was found to have highest amino acids units. On the other hand, different vinification technologies affected the mean polymerization degrees (mDP) of polymeric polyphenols in the aged red wines, being mDP 25.2 for the control one, mDP 13.1 for the wine made by the prolonged fermentation with skin and mDP 15.7 for the prolonged fermention with stem. These results indicated that, different winemaking technologies affect significantly the structural features of polymeric polyphenols.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sun Baoshan1, Jian Zhao3, Tingting Yang1, Martins Patrícia2, Ramos João4 and Lingxi Li1

1School of Functional Food and Wine, Shenyang Pharmaceutical University
2Pólo Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, I.P.

3School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University
4Departamento de Enologia, Herdade do Esporão, Reguengos de Monsaraz

Contact the author

Keywords

polymeric polyphenols; winemaking technology; structural composition; aged red wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

A synthesis approach on the impact of elevated CO2 on berry physiology and yield of Vitis vinifera

Besides the increase in global mean temperature the second main challenge of a changing climate is the increase in atmospheric carbon dioxide (CO2) in relation to physiology and yield performance of grapevines. The benefits of increasing CO2 levels under greenhouse environment or open field studies have been well investigated for various annual crops. Research under free carbon dioxide enrichment on field-grown perennial plants such as grapevines is limited to a few studies. Further, chamber and greenhouse experiments have been conducted mostly on potted vines under eCO2 conditions.

The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

The monitoring of the number of micro-orgranisms in wine is crucial for the wine producer. Traditional counting methods include microscopic enumeration and plating on selective media, which measures the culturability of the cells. The use of epifluorescence microscopy is, however, a method, which can measure both culturability and

Evaluating alternatives to cold stabilization in wineries: the use of carboximethyl cellulose, potassium polyaspartate, electrodialysis and ion exchange resins – the results after one year in the bottle

The tartaric stabilization of wines before bottling to avoid the precipitation of tartaric acid salts is an important and common step during wine production. The presence of precipitated salt crystals in bottle wines is detrimental for their quality and even a legal issue in some countries. Cold stabilization is the most common stabilization treatment. Although it has been shown to be effective, it has some significant disadvantages, mainly regarding losses of color and aromas and its high cost. Therefore, other products and methodologies are being introduced in the wineries for the replacement of this process. Some of these new techniques involve the reduction of the ions causing the insolubilization of tartaric acid while other are based in the formation of protective colloids or the inhibition of the crystallization of salts. In this study, white, rosé and red wines have been treated with carboxymethylcellulose, potassium polyaspartate and an ion exchange resin. The tartaric stability of the wines, together with the oenological, chromatic and sensory characteristics were studied after the wines had been stored during one year in the bottle. The results indicate that the use of carboxymethyl cellulose and potassium polyaspartate maintained the best the sensory and chromatic characteristics and the wine stability of the wines in comparison with an untreated control wine.

Sviluppo vegetativo del Nebbiolo nell’area di produzione del Barolo DOCG: influenza sulla qualita’ della produzione

Environment features and management operations on shoot and leaves modify the canopy during the vegetative season, changing the grapevine microclimate and the ratio between photo synthetic sources (the canopy) and productive sinks (the grapes).