IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Enzymes Impact During Fermentation On Volatile And Sensory Profile Of White Wines

Abstract

Favoring the formation of volatile compounds and their precursors in must and wine represent one of the principal goals during winemaking technology. In recent years, most attention has been placed on using glycosidases to enlarge the aroma profile of white wines. The effect of enzymes makes odorless glycosidically-bound precursors be converted into aromatic compounds. This paper focuses to study the influence of enzymes (pectolytic and β-glycosides) administered before alcoholic fermentation, even if most studies analyze their use in different winemaking stages. Two semi-aromatic varieties such as Fetească regală and Sauvignon blanc were chosen.
Identification and separation of volatile compounds were performed using an Agilent 7890A gas chromatography system coupled with a mass spectrometer detector 5975 C inert XL EI/CI MSD. The sensory profile of the wines was evaluated by a panel of 20 licensed tasters, consisting of 12 men and 8 women. Data processing and statistical representation (Principal Components Analysis, Anova, Fisher’s Least Significant Difference, Pearson correlation coefficient) was performed using Statgraphics® software 19.  
Following the analyses performed by gas chromatography, there were identified over 65 volatile compounds, depending on the grape variety. Fetească regală wines were described by higher proportions of ethyl octanoate (peach, pear, exotic fruits notes), 3-methylbutyl acetate (with fruity, pear, banana aroma), hexanoic acid (lactate, phenolic and exotic fruits odors), propan-2-yl acetate ethereal, ripe fruits, banana odor) and ethyl decanoate (floral, fruity, woody notes), while Sauvignon blanc wines were distinguished by considerable proportions of 2-methylpropan-1-ol (with spirits and solvent odor), 3-methylbutan-1-ol (banana, solvent notes), diethyl butanoate (fruity, floral, waxy, dusty odors), 1-phenylethanol (floral and honey flavors), and acetic acid (vegetal, rancid, sour perceptions). Numerous positive correlation were identified in both varieties, including propan-1-ol vs 3-methylbutan-1-ol, 3-methylbutyl acetate vs ethyl hexanoate and butan-1-ol vs octandecanoic acid in Fetească regală wines and diethyl butanoate vs 3-methylbutan-1-ol, ethyloctanoate vs propan-2-yl acetate, ethyl octanoate vs ethyl 4-hydroxybutanoate in Sauvignon blanc. Data confirmed a significant influence.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cotea Valeriu1, Scutarasu Elena Cristina1, Luchian Camelia Elena1, Colibaba Lucia Cintia1, Nagy Katalin2 and Trincă Lucia Carmen1

1Iași University of Life Sciences
2″Iuliu Hațieganu” University of Medicine and Pharmacy in Cluj-Napoca

Contact the author

Keywords

wines, enzymes, fermentation, volatile profile, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Extension to the Saumurois-Touraine area of an Anjou-originated method for the characterisation of the viticultural terroirs. (Loire Valley, France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation. Le modèle concerne des terrains issus principalement de roches mères métamorphiques et éruptives du Massif Armoricain. Cet outil de caractérisation des terroirs viticoles nécessite d’être adapté lorsqu’il s’agit d’ensembles géologiques très différents, en particulier sur sols d’apport et de roches mères tendres et poreuses du Bassin Parisien. Une meilleure compréhension de la réserve hydrique des sols apparaît être un critère important de l’interaction entre le milieu et la plante.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality

Soil humidity and early leaf water potential affected by water recharge before budbreak in cv. Tempranillo deficitary irrigated during the summer in the D. O. Ribera del Duero

The availability of water for irrigation is usually greater at the beginning of spring than in the following months, until the end of summer, in most regions of Spain.

Prototype development for the recovery of wine aromas from fermentation gases

Dealcoholised beverages are trendy. But this market segment is slowed down by flavour losses during dealcoholisation and by the reduced perception of flavours in the absence of alcohol.