IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of protein stabilization with aspergillopepsin I on wine aroma composition

Influence of protein stabilization with aspergillopepsin I on wine aroma composition

Abstract

The protein haze formation in white and rosé wines during storage, shipping and commercialization has always been an important issue for winemakers. Among the various solutions industrially proposed, the use of bentonite is certainly the most widespread. However, the harmful effects of this treatment are known either in terms of wine volume loss and wine flavour and aroma. The use of aspergillopepsin I -an acid endoprotease from Aspergillus spp- in must and wine has been recently approved by OIV and the European Commission for protein stability, coupled to a heat treatment. Beyond the established efficacy of this approach on wine stability, little is known about its influence on the wine aroma profile. The present study aims to evaluate the combined effect of heat treatment with proteases (HP) in musts on the concentration of 74 wine aroma compounds at lab and semi-industrial scale.  Eight grape musts were treated with acid proteases and heated at 70°C for the lab-scale trials, and the concentrations of wine volatile compounds at the end of the alcoholic fermentation were compared with those deriving form a traditional white and rosé winemaking protocol. The must treatment induced a significant increase (one-way ANOVA, Tukey’s HSD p

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gallo Adelaide1, Paolini Mauro1, Tonidandel Loris1, Leonardelli Andrea1, Barbero-Fondazione Alice1, Celotti Emilio2, Natolino Andrea2, Schneider Rémi3, Larcher Roberto1 and Roman Tomas1

1Fondazione Edmund Mach—Technology Transfer Center
2Università degli Studi di Udine—Dipartimento di Scienze Agroalimentari, Ambientali e Animali
3Oenobrands SAS Parc Agropolis II

Contact the author

Keywords

wine aroma, proteases, heat treatment, protein haze

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

In the face of climate change, new grapevine varieties will have to show an adaptive phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine.

Aromatic profile evolution of corvina, corvinone and rondinella grapes during withering

AIM AND METHODS: Grape withering is one of the key steps in the production of the most renowned red wines of the Valpolicella area, namely Amarone and Recioto. This practice, which was already used since Roman times, entails important modifications in grape composition and in the chemical and sensorial characteristics of the corresponding wines, especially in terms of aromatic profile. The aim of this research is evaluating the aromatic evolution during grape withering of the three main varieties used in Valpolicella wines: Corvina, Corvinone and Rondinella.Samples of the three varieties were analyzed at harvest and at different stages of withering, namely10%, 20% and 30% of weight loss. Free and glycosidically bound compounds were extracted and analyzed using Gas Chromatography- Mass Spectrometry (GC-MS). RESULTS: For all the samples the data were normalized to eliminate the effect of concentration due to grape dehydration. Terpene content and evolution varied considerably in relationship to grape variety. Corvinone was richer in cyclic terpenes (including phellandrene, limonene, and cymene) and they decreased during withering.

Territoires et zones viticoles. Aspects climatiques, pédologiques, agronomiques. Caractérisation des terroirs viticoles: une étude systémique

On assiste actuellement à l’émergence d’une demande sociale forte à l’égard de fonctions par ailleurs traditionnelles de l’agriculture, qui concernent la gestion des ressources du milieu, le maintien d’un tissu social rural, la valorisation des territoires ruraux et l’entretien des paysages.

Effect of concentration and competition between different fungicide residues on the adsorption efficiency of activated vegetal fibres for treatment of wine

Vineyards are strongly exposed to fungal diseases, attacks from insects and competition with weeds. Most treatments used on grape vines contain synthetic active substances, which may be transferred to the wine. Such pesticides have a negative image because many active substances are potential health hazards. A specific oenological treatment allowing the reduction of pesticide residues in wine based on activated vegetable fibres (AVF) is under examination by the International Organisation for Vine and Wine. This technique works efficiently and alters the wine only little (Lempereur et al. 2014).

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.