IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Phenotypic variations of primary metabolites yield during alcoholic fermentation in the Saccharomyces cerevisiae species

Abstract

Saccharomyces cerevisiae, as the workhorse of alcoholic fermentation, is a major actor of winemaking. In this context, this yeast species uses alcoholic fermentation to convert sugars from the grape must into ethanol and CO2 with an outstanding efficiency: it reaches on average 92% of the maximum theoretical yield of conversion. Moreover, S. cerevisiae is also known for its great genetic diversity and plasticity that is directly related to its living environment, natural or technological and therefore to domestication. This leads to a great phenotypic diversity of metabolites production. However, the metabolic diversity is variable and depends on the pathway considered. Primary metabolites produced during fermentation stand for a great importance in wine where they significantly impact wine characteristics. Ethanol indeed does, but others too, which are found in lower concentrations: glycerol, succinate, acetate, pyruvate, alpha-ketoglutarate… Their production, which can be characterised by a yield according to the amount of sugars consumed, is known to differ from one strain to another. In the aim to improve wine quality, the selection, development and use of strains with dedicated metabolites production without genetic modifications have to rely on the natural diversity that already exists. Here we detail a screening that aims to assess this diversity of primary metabolites production in a set of 51 S. cerevisiae strains from various genetic backgrounds (wine, flor, rum, West African, sake…). To approach winemaking conditions, we used a synthetic grape must as fermentation medium and measured by HPLC six main metabolites. Results obtained pointed out great yield differences between strains and that variability is dependent on the metabolite considered. Ethanol appears as the one with the smallest variation among our set of strains, despite it’s by far the most produced. However, as long as a small variability is measurable there is room for improvement. A clear negative correlation between ethanol and glycerol yields has been observed, confirming glycerol synthesis as a good lever to impact ethanol yield. Some genetic groups have been identified as linked to high production of specific metabolites, like succinate for rum strains or alpha-ketoglutarate for wine strains. This study thus helps to define the phenotypic diversity of S. cerevisiae in a wine-like context and supports the use of ways of development of new strains exploiting natural diversity. Finally, it provides a detailed data set usable to study diversity of primary metabolites production, including common commercial wine strains.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Monnin Ludovic1,2, Nidelet Thibault1, Noble Jessica2 and Galeote Virginie1

1SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2Lallemand SAS, Blagnac, France

Contact the author

Keywords

Saccharomyces cerevisiae, Wine, Alcoholic fermentation, Central Carbon Metabolism, Metabolic diversity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Climate change – variety change?

In Franconia, the northern part of Bavaria in Germany, climate change, visible in earlier bud break, advanced flowering and earlier grape maturity, leads to a decrease of traditionally cultivated early ripening aromatic white wine varieties as Mueller-Thurgau (30 % of the wine growing area) and Bacchus (12 %). With the predicted rise of temperature in all European wine regions the conditions for white wine grape varieties will decline and the grapes themselves will lose a part of their aromatic and fruity expression. Variety change towards the cultivation of later ripening white wine varieties is a very expensive and long-term process, and must be accompanied by special marketing efforts.

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Aroma characterization of aged cognac spirits: contribution of volatile terpenoid compounds

Cognac spirit aromas result from the presence of a wide variety of volatile odorous compounds associated with the modalities of distilled spirit elaboration and during aging. Indeed, these odorous compounds play an essential role in the finesse and complexity of the aged Cognac.

Tasting soils in Pinot noir wines of the Willamette valley, Oregon

The conventional wisdom of vintners is that alkalinity, and thus less sour and more rounded taste, are enhanced in wine and grapes challenged by low-nutrient soils.

Twenty-two shades of grey – An analysis of alcohol regulations in the Arab world

This article compares alcohol regulations across 22 Arab League member countries.