IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Fast, and full microbiological wine analysis using triple cellular staining.

Fast, and full microbiological wine analysis using triple cellular staining.

Abstract

We propose here a brand new large routine microbiological analysis method intended for oenology, in flow cytometry, using high performance equipment and triple selective cell staining, activated by fluorescence. The results and practical applications of the method are presented: Brettanomyces (Dekkera) Monitoring, fermentations monitoring, bottling and enological practices monitoring.The method allow a complete new microbiological tool for wine industry.The method has been accredited ISO 17025 in our laboratories.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Dubernet Matthieu1, Husset Mélanie1, Adler Sophie1, Lefebvre Cyril1, Guichard Perrine1, Hernandez Fanny1 and Paricaud Tatiana1

1Laboratoires Dubernet

Contact the author

Keywords

Wine microbiology, cytometry, brettanomyces, saccharomyces, bacteria

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Cabernet-Sauvignon ripening in Chile: follow-up study from 2012 to 2018

Temperature is a relevant parameter during vineyard development, affecting vine phenology and grape maturity. Moreover, the climate of the different Chilean valleys influences the varieties cultivated, the ripening period and the final quality of the wines. The use of growing degree days (GDD) is known worldwide for the study of climate in viticulture regions. However, little is known about the evolution of maturity and the sugar loading stop, based on this parameter.

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

Overview on wine and health 32 years after the French paradox 

Phenolic compounds or polyphenols are the most abundant and ubiquitous secondary metabolites present in the plant kingdom with more than 8000 phenolic structures currently known. These compounds play an important role in plant growth and reproduction, providing protection against biotic and abiotic stress such as pathogen and insect attack, UV radiation and wounding. (poly)phenols are widely distributed in the human diet mainly in plant-derived food and beverages (fruits, vegetables, nuts, seeds, herbs, spices, tea and red wine).

Yield formation and grape composition: more than meets the eye 

Fruit quality in grapes is not well defined but is often depicted as correlating inversely with crop yield. Both fruit yield and composition, however, are made from distinct components that interact in complex ways. Reproductive growth of grapevines extends over two growing seasons. Inflorescences initiated in buds during the previous year differentiate flowers and set and develop berries during the harvest year.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.