IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

Untargeted LC-HRMS analysis to discover new taste-active compounds in spirits.

Abstract

​For several years, the chemistry of taste has aroused high interest both from academics and industrials. Plant kingdom is a rich and reliable source of new taste-active compounds. Many sweet, bitter or sour molecules have been identified in various plants [1]. They belong to diverse chemical families and their sensory properties are strongly affected by slight structural modifications. As a consequence, the investigation of natural taste-active products in a given matrix appears as a major challenge for chemists. Such studies are particularly relevant in oenology since they allow a better understanding of wine and spirit taste.

The present study aims at proposing an original methodology for the discovery of new taste-active compounds. In this context, an untargeted metabolomic approach using liquid chromatography–high resolution mass spectrometry (LC-HRMS, Orbitrap analyzer) was implemented on several “eau-de-vie” of Cognac. Different statistical analyzes allowed to assess the overall structure of the data, which represents hundreds of ions, and to select and identify compounds of interest. On this basis, compound A and B were chosen according to several criteria. A fractionation protocol from “eau-de-vie” of Cognac and oak wood extracts, including liquid-liquid extractions, centrifugal partition chromatography (CPC) and Preparative-HPLC, was set up to isolate and characterize these targeted compounds. Their structures were elucidated by HRMS and nuclear magnetic resonance (NMR). Additionally, compound A was perceived as sweet and compound B exhibited a taste of fat in two matrices [2-3].These results highlight the interest of an untargeted differential analysis, hyphenating separative techniques and sensory analysis, to discover new taste-active compounds. These studies provide promising perspectives for a better understanding of the molecular markers responsible for the taste of foods and beverages.

References

[1] Kinghorn, A. D. Biologically Active Compounds from Plants with Reputed Medicinal and Sweetening Properties. Journal of Natural Products 1987, 50 (6), 1009–1024.
[2] Winstel, D.; Bahammou, D.; Albertin, W.; Waffo-Téguo, P.; Marchal, A. Untargeted LC–HRMS Profiling Followed by Targeted Fractionation to Discover New Taste-Active Compounds in Spirits. Food Chemistry 2021, 359, 129825.
[3] Winstel, D.; Capello, Y.; Quideau, S.; Marchal, A. Isolation of a New Taste-Active Brandy Tannin A: Structural Elucidation, Quantitation and Sensory Assessment. Food Chemistry 2022, 377, 131963.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Winstel Delphine1, Bahammou Delphine1, Capello Yoan2, Albertin Warren1, Waffo-Teguo Pierre1, Quideau Stephane1 and Marchal Axel1

1UMR ŒNOLOGIE (OENO), UMR 1366, ISVV, University of Bordeaux
2Univ. Bordeaux, ISM (CNRS-UMR 5255)

Contact the author

Keywords

Untargeted approach, Taste-active compounds, Sweetness, Quantitation, ellagitannin

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Adaptive winemaking technologies using PIWI varieties in the wine industry of Ukraine

In recent years, the impact of climate change has been pushing agriculture toward the implementation of innovative production methods aimed at countering the negative consequences of climate change.

Agrivoltaic: chances preparing Riesling towards a better climate resilience

Agrivoltaics (AV), the innovative dual-use of land for agriculture and photovoltaic energy production on the same land, offers a promising solution to the challenges of expanding renewable energy without compromising valuable agricultural land.

Influence du terroir et de la conduite du verger sur la composition des pommes à cidre

L’économie cidricole française est concentrée dans les régions du grand Ouest avec environ 40% de la production nationale de pommes à cidre pour la seule région Bas-Normande où le Pays d’Auge occupe

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Aroma characterization of mold resistant base wines for sparkling wine produced in a warm-temperate area at two different altitudes

In a recent context where consumers pay an increasing attention to sustainability and eco-friendly aspects in the decision-making process, the use of the resistant varieties in the wine sector have returned to the attention. In this context, the use of mould-resistant grape varieties would be an opportunity for sparkling wine producers as it can reduced the pesticide utilization in grape management and hence production costs.
However, the use of the resistant varieties to produce the base wine may be strongly influenced due to its requirements for a particular balance between sugars and acidity to ensure the quality of the final product. In addition, the aromatic profile of base wine plays a crucial role in the perception of the quality of the sparkling wine.