WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 Bio-acidification of wines by Lachancea thermotolerans

Bio-acidification of wines by Lachancea thermotolerans

Abstract

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation. Our work first elucidated the genetic (~200) and phenotypic (~100) diversity of LT strains, and then tested the performance of their subset in co-cultures with Saccharomyces cerevisiae (SC). In pure and mixed cultures alike, the modulation of acidity and other compositional parameters of wines depended on the LT strain, with either comparable or significant acidification relative to the SC control. An LT strain with exceptional bio-acidifying properties was selected, capable of lowering wine pH by ~0.5 units, and further characterised across a range of oenological conditions.

Our follow-up study aimed to i) compare the profiles of bio-acidified LT wines and acid-adjusted SC wines, and ii) evaluate the use of LT wines as blending components. For this purpose, high sugar/pH Merlot grapes were fermented with a sequential culture of LT and SC, and an SC monoculture. The aliquots of the SC control (pH 4) were acidified with either tartaric or lactic acid to the pH of the LT wine (pH 3.6), and the initial wines also blended in three proportions (1:3, 1:1, 3:1). Chemical analysis revealed major differences in a range of chemical parameters of wines (e.g. ethanol content, acidity parameters, volatile compounds, amino acids).  The compositional modulations were reflected in the sensory profiles of wines, as confirmed via ‘Rate-All-That-Apply’ evaluation by wine experts (n=30). Sensory profiles of the bio-acidified LT wine and the lactic acid-adjusted SC wine were similar, and contrasting to the tartaric acid-adjusted SC wine. Despite an identical initial matrix, lactic acid-adjusted SC wine had higher ‘red fruit’ flavour, and lower ‘hotness’, ‘bitterness’ and ‘body’ relative to tartaric acid-adjusted wine. This was driven by differences in ‘acidity’ perception, affected by titratable acidity (rather than pH) of wines. An inhibition of Brettanomyces bruxellensis growth was also observed in the bio-acidified LT wine and the lactic-acid adjusted SC wine. The profiles of blends were modulated depending on the proportion of the bio-acidified wine, thus highlighting the potential of this approach to boost ‘freshness’ and differentiate wine styles.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Ana, Hranilovic, Marina Bely, Isabelle Masneuf-Pomarede, Joana Coulon, Warren Albertin, Vladimir Jiranek

Presenting author

Ana, Hranilovic – Department of Wine Science, The University of Adelaide, Australia

Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | BioLaffort, Floirac, France | Université of Bordeaux, UR œnologie, EA 4577, USC 1366 INRAE, Bordeaux INP, ISVV, Villenave d’Ornon, France | Department of Wine Science, The University of Adelaide, Australia,

Contact the author

Keywords

non-Saccharomyces yeasts – Lachancea thermotolerans – wine acidification – volatile composition – RATA sensory profiling

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

FUNGAL CHITOSAN IS AN EFFICIENT ALTERNATIVE TO SULPHITES IN SPECIFIC WINEMAKING SITUATIONS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Using NIR/SWIR hyperspectral camera mounted on a UAV to assess grapevine water status in a variably irrigated vineyard

Vineyards face climate change, increasing temperatures, and drought affecting vine water status. Water deficit affects plant physiology and can ultimately decrease yield and grape quality when it is not well managed. Monitoring vine water status and irrigation can help growers better manage their vineyards.

Application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines: biological acidification, prise de mousse, aroma profile. Two cases of study

In this video recording of the IVES science meeting 2025, Raffaele Guzzon (Fondazione Edmund Mach, Centro di Trasferimento Tecnologico, San Michele all’Adige (TN), Italy) speaks about the application of non-Saccharomyces yeasts in peculiar winemaking, sparkling and sweet wines (biological acidification, prise de mousse, aroma profile). This presentation is based on an original article accessible for free on OENO One.

Il Cabernet di Atina dal 1850 al giorni nostri: un esempio di valorizzazione del territorio

In the province of Frosinone from 1850 they are cultivated in some zones wine grape of French origin like Merlot, Cabernet franc Cabernet sauvignon, Sirah, Pinot noir. The insertion of these varieties was the work of Pasquale Visocchi in the great company of family “Fratelli Visocchi Proprietari” (F. V.P.).