WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Posters 9 SKIN AND SEED EXTRACTS DIFFERENTLY BEHAVE TOWARDS SALIVARY PROTEINS

SKIN AND SEED EXTRACTS DIFFERENTLY BEHAVE TOWARDS SALIVARY PROTEINS

Abstract

Polyphenols extracted from skins and seeds showed different sensory attributes including astringency and bitterness. In previous studies, it has been demonstrated that extracts obtained either from skins or seeds interact differently with salivary proteins. Red grape winemaking consists of a maceration of the whole berries in which both skins and seeds are mixed together; however, no information on the mutual influence that skins and seeds could have on the reactivity towards saliva of hydroalcoholic extracts is known. In this study, five different wine model solutions were prepared: the first one contained only skins(Sk), the second one contained only seeds(Sd) and the remaining three contained different sk/sd ratios, as detailed below:A(ratio 2:1 sk:sd), B(ratio 1:1 sk:sd) and C(ratio 1:2 sk:sd). HPLC analyses were performed to determine the content of total native anthocyanins, acetaldehyde and polymeric pigments. Iron reactive phenolics, BSA reactive tannins (BSArT), vanillin reactive flavans (VRF) were also determined. The potential astringency of red samples was evaluated in vitro by the Saliva Precipitation index (SPI). The results obtained highlighted important differences in the behavior of the samples as a function of the different sk:sd ratio. When sk and sd were simultaneously present (samples A,B and C), a significant lower content of anthocyanins with respect to Sk was observed. This was likely due to a possible adsorption of pigments on cell walls contained in pomaces. As the amount of seeds increased in the solutions containing also skins, the content of VRF,BSArT,PP and acetaldehyde linearly increased. After 24 months of aging under controlled conditions, all the trends observed at 0 time were confirmed and appeared to be enhanced. Concerning the interactions toward salivary proteins, as expected, sample Sd showed the highest SPI. Surprisingly, when skins were added to a model solution containing seeds, a decrease of SPI occurred, although VRF and BSArT increased. This suggests that anthocyanins and polymeric pigments in A, B and C samples determined a lower reactivity of compounds contained in the whole solution towards saliva proteins. SPI values are not correlated to the amount of VRF and BSArT in the samples. Results highlighted not only the important role of the sk:sd ratio in the extraction of compounds from berries, but also that of anthocyanins extracted from skins in decreasing the reactivity of grape compounds towards saliva.

DOI:

Publication date: June 27, 2022

Issue: WAC 2022

Type: Article

Authors

Francesco Errichiello, Antonio Guerriero, Luigi Picariello, Francesca Coppola, Alessandra Rinaldi, Martino Forino, Angelita Gambuti.

Presenting author

Francesco Errichiello – Department of Agricultural Sciences, Grape and Wine Science Division, University of Naples “Federico II”, Viale Italia (Angolo Via Perrottelli), 83100 Avellino, Italy.

Department of Agricultural Sciences, Grape and Wine Science Division, University of Naples “Federico II”, Viale Italia (Angolo Via Perrottelli), 83100 Avellino, Italy;Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France,

Contact the author

Keywords

skin/seed extract, anthocyanins, polymeric pigments, astringency

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

The interplay between water deficit and nitrogen and potassium nutrition in Vitis vinifera L.

Climate change is expected to provoke an increase in the frequency and intensity of drought events and water scarcity that will have detrimental effects on photosynthesis and plant yield. To sustain an appropriate plant yield under sub-optimal conditions, a common practice is the application of high amounts of fertilizers with negative environmental consequences. The present study aims at evaluating the interplay between water and nutrient availability, namely nitrogen (N) and potassium (K), in two grapevine cultivars with a different sensitivity to water shortage stress. Two-year-old Vitis Vinifera cv. Cabernet Sauvignon and Grenache grapevine plants grafted on SO4 rootstock have been transferred in pots under semi-environmental conditions.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

Managing Grapevine Powdery Mildew with Ultraviolet-C Light in Washington State

Germicidal ultraviolet-C (UV-C) light has shown promising results for suppression of several plant-pathogenic microorganims, including Erysiphe necator, which attacks grapevine. In Washington State the majority of winegrape production is in a semi-arid steppe environment, with historically low powdery mildew disease pressure, making it a promising area to deploy UV-C as a disease management tool. Trials focusing on UVC application timing and frequency will assist in developing regionally-appropriate application recommendations for eastern Washington State.

Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Nowadays the use of non-Saccharomyces as starters of alcoholic fermentation (AF) has increased because of the modulation of the organoleptic profile of wines

Grape ripening delaying with combined use of leaf removal and natural shading in Manto negro (Vitis vinifera L.) under deficit irrigation

The increasing frequency of heat waves during grape ripening presents challenges for the production of high-quality wine grapes. This underscores the significance of developing effective irrigation and canopy management techniques to optimize both yield and grape quality.
A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality. In a four-block experimental vineyard at Bodega Ribas in Mallorca, two irrigation treatments—moderate and severe deficit irrigation—were implemented. Within each irrigation plot, three light exposure treatments were randomly assigned, encompassing exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening.