GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

Abstract

Context and purpose of the study ‐ The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).

Material and methods ‐ The objective was to determine the impact of an increment of atmospheric CO2 and temperature (both acting independently and combined) on the grape composition of five somatic variants of Tempranillo (CL306, T3, RJ43, 1084 and VN31). Fruit‐bearing cuttings were grown from fruit‐set to maturity (around 22ºBrix) in temperature gradient greenhouses under two temperature regimes (ambient temperature and ambient temperature + 4ºC) in combination with two CO2 levels (400 ppm and 700 ppm).

Results ‐ The evolution of sugars (glucose and fructose) and malic acid, as well as the final levels of anthocyanins and the relation of anthocyanins and sugars indicate that grape ripening will be affected by climate change in different manner among somatic variants. High temperatures increased the degradation of malic acid and raised the accumulation of sugars, meanwhile CO2 levels also promoted the degradation of malic acid especially at maturity. Somatic variants showed differences in the anthocyanin levels at maturity. Total anthocyanins were not dramatically affected by the temperature and CO2 levels assayed. The CL306 and T3 somatic variants were identified as potential candidates for the adaptation of cv. Tempranillo to climate change.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Marta ARRIZABALAGA‐ARRIAZU1,2,3, Fermín MORALES4,5, Juan José IRIGOYEN1, Inmaculada PASCUAL1,  Ghislaine HILBERT3

1 Universidad de Navarra. Faculty of Sciences. Plant Stress Physiology group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño). Irunlarrea, 1. 31008, Pamplona, Spain
2 Université de Bordeaux, Institut des Sciences de la Vigne et du Vin. Unité Mixte de Recherche, 1287 Ecophysiologie et génomique fonctionelle de la vigne. 33883, Villenave d’Ornon, France
3 UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, 210 Chemin de Leysotte 33882 Villenave d’Ornon, France
4 Instituto de Agrobiotecnología (IdAB), CSIC-Gobierno de Navarra, Avenida De Pamplona 123, 31192 Mutilva Baja, Spain.
5 Estación Experimental de Aula Dei (EEAD). CSIC. Department of Plant Nutrition. Apdo. 13034, 50080 Zaragoza, Spain

Contact the author

Keywords

Grapevine, Climate Change, Tempranillo, Sugars, Malic acid, Anthocyanins

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Exploring diversified service offerings in the Spanish wine industry

The spanish wine industry stands at a crossroads, transitioning from a traditional emphasis on wine production to a landscape increasingly characterized by diversified service offerings. This paper delves into the nuances of servitization within spanish wineries, investigating the determinants of servitization and the impact of these diversified services on revenue streams. The paper posits hypotheses concerning the influence of various factors, such as winery size, location, market orientation, ownership structure, market competition, regulatory environment, market demand, firm capabilities, owner characteristics, and firm age, on the adoption of diversified service offerings in spanish wineries. The methodology involves comprehensive regression analysis to unravel the drivers of servitization within this context.

How climate change can modify the flavor of red Merlot and Cabernet-Sauvignon

he main goal of this research was to identify key aroma compounds linked with the maturity of grapes (ripe and overripe) and involved in grapes and wines with an intense dried fruits aroma. Odoriferous zones reminiscent of these aromas were detected by gas chromatography coupled with olfactometry (GC-O).

Nitrogen status of vines influences aged wines aromas. Examples of aged Champagne reserve wines and red Bordeaux wines

The sensory definition of the aging bouquet of red Bordeaux wines has been shown to be structured around seven main aromatic nuances: “undergrowth”, “spicy” “truffle”, “fresh red- and black-berry fruits”, “liquorice”, “mint”, and “toasted” (1). Some of these descriptors are also used to describe the aromatic notes of old Champagnes (2) suggesting common volatile compounds between these two types of wine.

Development of a new indicator of grape skin ripening in relation to Botrytis cinerea susceptibility

The bunch rot induced by Botrytis cinerea is an important disease of grapevine that causes a diminution of grape quality and a considerable yield loss leading to an economic loss

Unravelling Saccharomyces cerevisiae biosynthethic pathways of melatonin, serotonin and hydroxytyrosol  by UPLC-HRMS Isotopic labelling analysis

The main objective is to unravel the yeast biosynthetic pathways for MEL, SER and HT by using the respective labelled amino acids precursors: 15N2-L tryptophan and 13C-tyrosine.
The alcoholic fermentation experiments are performed with two different commercial
S cereviseae yeasts using synthetic must with the addition of the labelled compounds and the bioactive compounds were followed during the fermentation process. Six biological replicates of the fermentations were considered. MEL, SER and HT were analysed by UHPLC coupled to High Resolution Mass Spectrometry (HRMS). Accurate mass determination allowed to unequivocally distinguishing labelled and unlabelled compounds.