GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Abstract – Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011). The intraspecific variation in heat thresholds for grapevines impacts adaptation capacity (Parker et al 2011, Zapata et al 2017). Predicting phenology and the impact of temperature helps growers select later ripening varieties and clones most suitable for their location (Parker et al 2011). A broader understanding of variety sensitivity to climate change can inform planting and breeding decisions. Accurate estimations of ripening through phenological models can also guide viticultural decisions, especially under changing climate conditions (Zapata et al 2017). Models of warming indicate that increases in temperature are not uniform globally, and that warming has increased in the winegrowing areas of California and Western Europe more than South America and Australia during the past 50 years (Jones 2013). Even with our current understanding of varieties’ climate niches, only a few existing cultivars are late ripening enough to avoid the warming predicted to occur during maturation in future climate scenarios (Parker et al 2013, García de Cortázar-Atauri et al 2017).

Materials and Methods – This study builds on previous research by tracking over 130 varieties in a common garden over five years and models the response of the varieties through three main phenological stages: budburst, flowering, and veraison in a common garden, which allows for a more specific ecological study of each variety’s response to climate. We also compare traditional Vitis vinifera species with hybrids grown at the University of California, Davis, originally cultivated by Harold Olmo. We present sensitivity as the days shifted (standard error in days) over five years in response to temperature, and we include recommendations for future planting under several climate change scenarios.

Results – Our results suggest that future breeding and planting programs choose varieties with lower sensitivity to temperature changes, with later ripening patterns and high heat tolerance, such as hybrids cultivated by Harold Olmo, Italian, and French varieties. Future research will target potential varieties for successful marketing in California under future climate conditions, and potentially elucidate physiological drivers of phenological variation that have been artificially selected through grapevine cultivation.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Molly CLEMENS1, Andrew WALKER2, Elizabeth WOLKOVICH3

1 University of California Davis and San Diego State University Joint Doctoral Program in Ecology*
2 University of California Davis Department of Viticulture and Enology
3 University of British Columbia Department of Conservation and Forestry

Contact the author

Keywords

climate change, phenology, warming, grapevine

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Lean management to improve sustainability in wine sector: an exploratory study in the Prosecco DOC appellation

The contemporary wine sector confronts a formidable array of challenges, including burgeoning production costs and the constricted availability of natural resources. Heightened consumer awareness regarding sustainability issues further compounds these pressures, compelling companies to adopt more judicious resource utilization strategies. In response to these imperatives, there is a growing recognition of the need to overhaul production methodologies within the wine industry with a view to minimizing inputs and eliminating waste.

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.

Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Aim: Geographical Indications-GI are commonly used to protect territorial products around the world, such as cheese and wine. This qualification is useful because it improves the producer’s organization, protects and valorizes the distinct origin and quality of the product, increases recognition and notoriety, and adds value for products. Tropical wines are mainly produced in Brazil, India,

Genome editing applications on grapevine cv. Aglianico for the knockout of susceptibility genes related to fungal diseases

Context and purpose of the study. Italy hosts diverse grapevine varieties crucial for viticultural biodiversity. Preserving this biodiversity is essential for maintaining a diversified genetic pool and addressing future challenges such as climate change and emerging plant diseases.