GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The impact of decadal cold waves over Europe on future viticultural practices

The impact of decadal cold waves over Europe on future viticultural practices

Abstract

Context and purpose of the study – A crucial issue associated with the long-term impact of climate change in viticulture concerns the capacity of resilience of the typical varieties currently cultivated in traditional areas. Indeed, regions that are currently characterized by optimal climatic conditions can cease to be so in the future. At the same time, new premium wine production regions may arise north of 50oN. Both these threats and opportunities are based on the assessment of a very likely gradual temperature increase along the 21st century, resulting from the ensemble mean of the state-of-the-art climate projections. Such an assessment is orienting decision-makers and stakeholders to rethink the grapevine cultivation zoning, prefiguring, for each variety, a shift at higher latitudes and/or at higher altitudes areas. However, model uncertainty is very large over Europe, as it is associated with the fate of the of the North Atlantic subpolar gyre (SPG) oceanic convection, which is simulated to collapse in a few climate models, producing single or multiple abrupt temperature drop over the North Atlantic. These “cold waves” strongly influence the temperature evolution over Europe, yet are ruled out in a multi-model ensemble analysis, since hidden by the procedure of averaging. Here, we isolate and investigate the implications that such large decadal-scale temperature variations potentially have for viticulture over Europe.

Material and methods – Our methodology consists in coupling dynamical downscaled EUR-44 CORDEX temperature projections with a hierarchy of phenological models simulating the main developmental stages of the grapevine. In particular, we use a set of 7 different climate models – one of which, the CSIRO-Mk3-6-0 model, exhibits a SPG convection collapse – and 3 different phenological models, namely (i) a linear non-sequential, (ii) a linear sequential and (iii) a non-linear sequential model.

Results – The general increase of temperature over Europe projected by all the climate models over the 21st century leads to an anticipation of all the developmental stages of the grapevine. This warming trend makes climate conditions adequate for high-quality wine production in some regions that are currently not. However, projections from CSIRO-Mk3-6-0 show that this long-term warming trend is suddenly interrupted by cold waves lasting several years over most of Europe, abruptly pushing the climate back to conditions that are very similar to the present. By defining the climatic suitability for premium wine production as those conditions satisfying the temperature requirements for the grapevine ripening to fall within a specific period of the year, we report a loss of suitability during the cold wave events in most of those regions that became favourable due to the 21st century gradual warming. Abrupt cooling in the North Atlantic, although simulated by only a few climate models, has been shown to be physically plausible in the context of climate change. Our findings therefore disclose that varietal northward shift may be not the most appropriate strategy if applied over those regions strongly hit by the cold waves, and so provide additional information for long-term plans of adaptation, which, so far, are mainly oriented towards the possibility of continuous warming conditions.

DOI:

Publication date: March 11, 2024

Issue: GiESCO 2019

Type: Poster

Authors

Giovanni SGUBIN1, Didier SWINGEDOUW1, Iñaki García de CORTÁZAR-ATAURI2, Nathalie OLLAT3, Cornelis van LEEUWEN3

1 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC) -Universitè de Bordeaux, Pessac, France
2 AGROCLIM – Institut National de la Recherche Agronomique (INRA), Avignon, France
EGFV, Bordeaux Sciences Agro, Univ. Bordeaux, 33883 Villenave d’Ornon, France

Contact the author

Keywords

Climate Change, Grapevine Phenology, Climatic suitability, Decadal-scale Cold Waves

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

When organic chemistry contributes to the understanding of metabolism mechanisms

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber.

Application of grape pomace and stem extracts on Vitis vinifera L. cv. Monastrell: Increased stilbene content of grapes and wines

Pomace and grape stems are the main solid organic waste from winery industries, resulting from the pressing and/or fermentation processes it is generated in large amounts in many parts of the world

Influence of preflowering basal leaf removal on aromatic composition of cv. Tempranillo wine from semiarid climate (Extremadura Western Spain)

Abstract In this work the effects of early leaf removal performed manually at preflowering phenological stage, on the volatile composition of Tempranillo (Vitis vinifera L.) wines were studied. From 2009-2011 vintages 34 wine volatile compounds were identified and quantified by gas chromatography-mass spectrometry (GC-MS) where early leaf removal only modified 25 of them. The total C6 compounds, acetates and volatiles acids (with exception of isobutyric acid) were affected by defoliation, whereas alcohols and esters showed a minor effect. Furthermore the vintage effect also was shown.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.