GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Abstract

Context and purpose of the study – Vine diseases have a strong impact on vineyards sustainability, which in turns leads to strong economic consequences. Among those diseases, Flavescence dorée spreads quickly and is incurable, which led in France to the setup of a mandatory pest control implying the systematic use of pesticides and the prospection and uprooting of every infected plants. Remote sensing could be a very powerful tool to optimize prospection as it allows to produce quickly accurate maps over large areas. Recent studies have shown that high spatial resolution (10cm/pixel) multispectral images acquired from UAVs allow to map Flavescence dorée in vineyards using leaves discolorations [e.g. Albetis et al., Remote Sensing, 2017]. Nevertheless, confusion and misdetections still exist, especially with other diseases showing similar leaves discolorations and with mixtures of different materials occurring within one pixel. Mixture effects are also crucial when dealing with satellite images where spatial resolution is much lower (≥10m/pixel). This study aims at improving the detection of vine diseases in UAVs, airborned and satellite images using an innovative tool that identifies the spectral signatures of every elementary materials (e.g. healthy and sick leaves) and their relative contribution at a subpixel level.

Material and methods – We use three distinct datasets acquired in 2016 over the same vineyard located in the Southwest of France (AOC Gaillac): a multispectral image acquired with MicaSense sensor onboard an UAV (5 bands, 10cm/pixel), a Sentinel-2 multispectral image (12 bands, 10m/pixel) and an airborned hyperspectral image (256 bands, 1m/pixel). Ground truth for validation is available through exhaustive centimetric locations of every sick vines for several plots in the studied area. On the methodological perspective, we use an innovative method that performs an unsupervised unmixing jointly with anomalydetection capacities and has a global linear complexity [Nakhostin et al., TGRS, 2016]. Nonlinearities are handled by decomposing the data on an overcomplete set of spectra, combined with a specific sparse projection, which guarantees the interpretability of the analysis.

Results – This paper reports preliminary results obtained with the unmixing algorithm ran over one selected plot available in the dataset. Initial results show the algorithm can detect and separate multiple sources within the plot. Analysis of retrieved endmembers shows a good correlation with the components that can be found in the field, especially with the evidence of healthy and sick leaves’ signatures. Nevertheless, initial mapping still shows some discrepancies with ground truth and further work needs to be done to fine tune the model parameters.

DOI:

Publication date: September 27, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Harold CLENET1,2*, Sina NAKHOSTIN3, Eve LAROCHE-PINEL1,2,4, Sylvie DUTHOIT4

1 Ecole d’Ingénieurs de PURPAN, Toulouse INP, 75 voie du TOEC, 31076 Toulouse, France
2 UMR 1201 DYNAFOR, INRA-Toulouse INP, Chemin de Borde-Rouge, 31326 Castanet-Tolosan, France
3 Ecole et Observatoire des Sciences de la Terre – EOST, 67084 Strasbourg, France
4 TerraNIS, 12 Avenue de l’Europe, 31520 Ramonville Saint-Agne, France

Contact the author

Keywords

vine diseases, remote sensing, image processing, non-linear unmixing, satellite imagery, UAVs

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The chemical composition of disease resistant hybrid grape cultivars and its impact on wine quality: an exploratory enquiry into sustainable wines

Disease resistant hybrid grape cultivars are now allowed in a number of EU wine PDOs, and are also accepted in a number of countries outside the EU. There is increasing interest in diseases resistant hybrid grape cultivars (RHGCs) because they allow for the production of healthy, high quality grapes with limited use of pesticides and the associated environmental and public health

Recovery and purification of proteins from grape seed byproducts using proteomic and separative techniques

Grape seeds account for around 5% of the weight of the whole grape berry, representing approximately 40%-50% of the solid by-products that the different wine industries generate during the winemaking process.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

An automated cooling system to mitigate thermal and radiative stresses in Pignoletto white grapes

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

The modification of cultural practices in grapevine cv. Syrah, does it modify the characteristics of the musts?

The work shows the results of a year of experimentation (2020) in a Syrah variety vineyard in La Roda (Castilla-La Mancha, Spain). The trial approach was on a randomized block design with two factors: Irrigation (I) and Pruning (P).
Irrigation schedules were adjusted to apply amounts close to 1,500 m3/ha. With this provision, 2 different irrigation treatments were proposed: I1) Start of irrigation from pea-sized grape to post-harvest (providing at least 20 % of the total amount of irrigation water to be provided post-harvest); I2) Start of irrigation from pea-sized grape to harvest (usual irrigation practice in the study area). Pruning was proposed with two treatments, one at the end of January (P1), which is pruning on a conventional date; and P2) pruning carried out at the beginning of budding. In total, 4 repetitions were designed with 4 elementary plots, each one of them representing one of the proposed treatments (I1P1; I1P2; I2P1; I2P2). In total, 16 plots were worked on and each elementary plot consisted of 30 strains, distributed in 3 lines.
The productive response was evaluated with the yield results of the harvest harvested at 23 ºBrix. The qualitative response was measured in the musts through the indices of technological (acidity, pH and potassium) and phenolic maturity and aromatic compounds in free and glycosylated fractions. The treatments tested had, in general, an effect on the different variables analyzed.