OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Grape and wine microorganisms: diversity and adaptation 9 Mathematical modeling of fermentation kinetics: a tool to better understand interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in mixed cultures

Mathematical modeling of fermentation kinetics: a tool to better understand interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in mixed cultures

Abstract

Nowadays the use of Torulaspora delbrueckii is more and more common in winemaking. However, its behavior in presence of Saccharomyces cerevisiae is not always predictable. Indeed, the interactions existing between the two yeasts are still not well characterized and can lead to a bad control during their implementation in mixed cultures. The objective of the work presented here was to use the mathematical modeling as a tool to better understand microbial interactions in this context. 

Mixed cultures of a couple of oenological yeasts composed of T. delbrueckii and S. cerevisiae were carried out on a synthetic grape must in anaerobiosis. The impact of various parameters was evaluated: assimilable nitrogen concentration, direct and indirect contact (thanks to a membrane bioreactor), increase of lipids concentration (Tween 80 and ergosterol). 

The analysis of experimental data acquired during the pure cultures of each yeast enable to establish a mathematical model to describe the fermentation kinetics for pure cultures. Then this model was used to predict the kinetics of mixed cultures without any interaction except competition for substrates (sugar and nitrogen). The comparison between predicted and experimental kinetics showed that in mixed culture several kind of interactions must be taken into account: competition for space, cell to cell contact, reciprocal stimulation. Moreover, at low lipids initial concentration, S. cerevisiae dominated T. delbrueckii by producing a toxic metabolite. An increase in the initial lipids concentration completely reversed this domination.

DOI:

Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article

Authors

Patricia Taillandier, Cedric Brandam, Sandra Beaufort, Paul Brou

LGC université de Toulouse – 4 alle Emile Monso CS 84234 – 31432 Toulouse Cedex4

Contact the author

Keywords

modeling, interaction, Saccharomyces, Torulaspora 

Tags

IVES Conference Series | OENO IVAS 2019

Citation

Related articles…

Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines

A new framework for the segmentation and characterization of row crops on remote sensing images has been developed and validated for vineyard monitoring. This framework operates on any high-resolution remote sensing images since it is mainly based on geometric information. It aims at obtaining maps describing the variation of a vegetation index such as NDVI along each row of a parcel.

Short-term canopy strategies to enhance grapevine adaptation to climate change

Context and purpose of the study. Viticulture faces significant challenges due to climate change, with increased frequency of extreme weather events impacting grapevine growth, grape quality, and wine production.

Quantification of the production of hydrogen peroxide H2O2 during wine oxidation

Chemical studies aiming at assessing how a wine reacts towards oxidation usually focus on the characterization of wine constituents, such as polyphenols, or oxidation products. As an alternative, the key oxidation intermediate hydrogen peroxide H2O2 has never been quantified, although it plays a pivotal role in wine oxidation. H2O2 is obtained from molecular oxygen as the result of a first cascade of oxidation reactions involving metal ions and polyphenols. The produced H2O2 then reacts in a second cascade of oxidation to produce reactive hydroxyl radicals that can attack almost any chemical substrate in wine.

Red wine astringency: evolution of tribological parameters during different harvest dates

Astringency is a specific oral sensation dominated by dryness and puckering feeling and is one of the leading quality factors for red wines, as well as some fruit products

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.