GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

Abstract

Context and purpose of this study – The use of hybrids in viticulture is one of the alternatives for sustainable production in hot and rainy regions during grapevine maturation. This sustainable production concerns the reduction of pesticide use, adaptation to climate and control of vine decline. The SR 0.501-17 wine grape hybrid, developed in the grapevine program of the Agronomic Institute of Campinas (IAC), is characterized by producing white grapes with small spherical berries with seeds. The agronomic characterization of this hybrid, especially in different climatic conditions, as well as the evaluation of its performance in winemaking are necessary. The objective of this work was to characterize the duration and thermal requirements of the different phenological stages and the influence of rainfall on the physicochemical characteristics of the must in two contrasting climate regions of the State of São Paulo.

Material and methods – The phenology, thermal requirements expressed in degree-days, soluble solids content and titratable acidity of the hybrid were evaluated during the grape growing seasons from 2012 to 2016, in contrasting climatic conditions at Jundiaí at east and Votuporanga at northwest of the São Paulo State-Brazil.

Results – The average duration of the pruning-harvest period was 146 days in Jundiaí and 131 days in Votuporanga and the average duration of the grape maturation period (beginning of berry softening to harvest) was 29 and 27 days, respectively for Jundiaí and Votuporanga. The thermal requirement expressed in degrees-days for the hybrid growth cycle was 1663 and 1923, and for the maturation period, 390 and 485, respectively for Jundiaí and Votuporanga, SP. Rainfall during the maturation period showed negative correlation with total soluble solids and maturation index and positive correlation with titratable acidity. The effect of temperature on vine growth cycle were more pronounced in Jundiaí in comparison to Votuporanga while the effect of rainfall on the maturation characteristics were more effective in Votuporanga when compared to Jundiaí.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Mara Fernandes MOURA1*, Mário José PEDRO JÚNIOR 2, José Luiz HERNANDES1

1* Instituto Agronômico de Campinas, Centro Avançado de Pesquisa de Frutas, Av. Luiz Pereira dos Santos, 1500, CEP. 13214-820, Jundiaí, São Paulo, Brasil
2 Instituto Agronômico de Campinas, Centro de Solos e Recursos Ambientais, Bolsista do CNPq (Processo 302162/2016-0). Av. Barão de Itapura, 1481, CEP 13020-902, Campinas, São Paulo, Brasil

Contact the author

Keywords

cycle duration, degree-days, soluble solids, titratable acidity

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed.

Heat berry: the influence of abiotic factors on the composition of berries, must and wine in Vitis vinifera L. CV Riesling

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

The kinetics of grape aromatic precursors hydrolysis at three different temperatures

In neutral grapes, it is known that most aroma compounds are present as non-volatile
precursors.

Frost risk projections in a changing climate are highly sensitive in time and space to frost modelling approaches

Late spring frost is a major challenge for various winegrowing regions across the world, its occurrence often leading to important yield losses and/or plant failure. Despite a significant increase in minimum temperatures worldwide, the spatial and temporal evolution of spring frost risk under a warmer climate remains largely uncertain. Recent projections of spring frost risk for viticulture in Europe throughout the 21st century show that its evolution strongly depends on the model approach used to simulate budburst. Furthermore, the frost damage modelling methods used in these projections are usually not assessed through comparison to field observations and/or frost damage reports.
The present study aims at comparing frost risk projections simulated using six spring frost models based on two approaches: a) models considering a fixed damage threshold after the predicted budburst date (e.g BRIN, Smoothed-Utah, Growing Degree Days, Fenovitis) and b) models considering a dynamic frost sensitivity threshold based on the predicted grapevine winter/spring dehardening process (e.g. Ferguson model). The capability of each model to simulate an actual frost event for the Vitis vinifera cv. Chadonnay B was previously assessed by comparing simulated cold thermal stress to reports of events with frost damage in Chablis, the northernmost winegrowing region of Burgundy. Models exhibited scores of κ > 0.65 when reproducing the frost/non-frost damage years and an accuracy ranging from 0.82 to 0.90.
Spring frost risk projections throughout the 21st century were performed for all winegrowing subregions of Bourgogne-Franche-Comté under two CMIP5 concentration pathways (4.5 and 8.5) using statistically downscaled 8×8 km daily air temperature and humidity of 13 climate models. Contrasting results with region-specific spring frost risk trends were observed. Three out of five models show a decrease in the frequency of frost years across the whole study area while the other two show an increase that is more or less pronounced depending on winegrowing subregion. Our findings indicate that the lack of accuracy in grapevine budburst and dehardening models makes climate projections of spring frost risk highly uncertain for grapevine cultivation regions.

Anthocyanins in tannat wines rapidly evolve toward unidentified red-coloured pigments

To assess the relationship between the reported low-stability of Tannat colour during wine storage and its pigment composition and evolution