Macrowine 2021
IVES 9 IVES Conference Series 9 Insights from selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics applied to the quick discrimination of grapevine varieties

Insights from selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics applied to the quick discrimination of grapevine varieties

Abstract

Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) is an innovative analytical method based on soft chemical ionization to analyze thecomposition in volatile compounds of a gas phase. In this research, we propose a quick way to access the aromatic potential of grape varieties through a scan of their volatilome by SIFT-MS and chemometrics approaches. During 3 sampling campaigns carried out in September 2020, we collected berries from 21 grapes varieties planted in a germplasm collection. For each variety, three replicate samples of 50g were gently crushed and put in 1L Schott bottles that were directly connected to a SIFT-MS equipment to analyse the headspace. Analytes injected in the SIFT-MS were ionized with 3 different reagent ions (H3O+, O2+. and NO+) to generate increased molecular fragmentation data (2). M/z data/ratios were first analysed with XlStats software (Addinsoft, Paris, France) using a one-way ANOVA treatment to determine the ions that enabled to discriminate the grape varieties. Then based on these discriminating ions, Principal Component Analysis (PCAs) were constructed and Hierarchical Clustering Analysis (HCA) ensued to create similarity groups. Finally, an ANOVA treatment was conducted to determine significant differencies in ions abondances between groups (1). For each homogenous group, a cultivar was selected to perform Headspace-Solid Phase Microextraction (HS-SPME) followed by Gas Chromatography-Mass Spectrometry (GC-MS) analyzes to connect SIFT-MS data to the composition in volatile compounds (3). Grape varieties were easily distinguishable based only on their SIFT-MS volatilome scan. The technique was able to distinguish high and low aroma compounds producers, and to organise grape varieties by similarity. We proved that SIFT-MS is a really quick and interesting tool with potential application in various fieds of viticulture such as phenotyping of grape varieties based on their volatile composition or studying of the impact of viticultural practices on the grape aroma composition using an easy to implement untargeted approach.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Thomas Baerenzung Dit Baron

PPGV, INP-PURPAN, University of Toulouse. ,Alban JACQUES, PPGV, INP-PURPAN, University of Toulouse Olivier GEFFROY, PPGV, INP-PURPAN, University of Toulouse Valérie SIMON, LCA, INP-ENSIACET, University of Toulouse Olivier YOBRÉGAT, IFV Sud-Ouest

Contact the author

Keywords

sift-ms, grapevine, volatilome, chemometrics, phenotyping

Citation

Related articles…

Influence of harvest time and withering length combination on reinforced Nebbiolo wines: phenolic composition, colour traits, and sensory profile

Sforzato di Valtellina DOCG is a reinforced dry red wine produced in the mountain area of Valtellina alpine valley (North Italy), using ‘Nebbiolo’ grapes that undergo a withering process. This process impacts on the grape composition due to a sugar concentration and changes in secondary metabolism influencing volatile organic compounds (VOCs) and polyphenols.

Leaf elemental composition in a replicated hybrid grape progeny grown in distinct climates

The elemental composition (the ionome) of grape leaves is an important indicator of nutritional
health, but its genetic architecture has received limited scientific attention. In this study, we
analyzed the leaf ionome of 131 interspecific F1 hybrid progeny from a Vitis rupestris (♀) X Vitis
riparia (♂) cross. The progeny were replicated in New York, South Dakota, Southwest Missouri ad Central Missouri, and the concentration of 20 elements were measured in their leaves at
three different phenological stages during the growing season. In leaves collected at the apical node at anthesis, elemental concentrations correlated in a consistent manner (p < 0.05) across all four geographic locations. In subsequent phenological stages, elemental ratios in the apical-node leaves remained consistent across the South Dakota and New York sites, but not across the Missouri sites. In leaves collected at the basal and middle nodes, correlations varied greatly across all locations.

Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

The increasingly frequent heat waves during grape ripening pose challenges for high quality wine grape production. Defoliation is a common practice that can improve the control of diseases in bunches, but also it increases the exposure to sunlight. Grapes exposed to solar radiation reach temperatures over the optimum for berry development and maturation. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 using Manto negro wine grapes to study the effect of applied irrigation and different light exposure levels on grape quality. Two irrigation treatments were imposed based on the frequency and amount of water doses in a four-block experimental vineyard at Bodega Ribas (Mallorca). Three light exposure treatments were randomly applied in each irrigation plot. The light treatments included exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity was estimated every 2 weeks. Midday leaf water potential was measured weekly. Additionally, apparent electrical conductivity was measured between rows to estimate the soil water content variability. Light and temperature sensors were installed at the bunch level to quantify the differences in bunch temperature and light intensity among treatments. The effect of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH were analysed at 5 moments along grape ripening. During different heat waves, the natural shading technique decreased the maximum bunch temperature around 10 °C respect to the exposed bunches in both irrigation strategies. The combination of defoliation and shading techniques after softening decreased TSS at harvest and affected most of the quality parameters during the last stages of ripening, showing an interesting technique to delay ripening in warm viticulture areas.

Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

The study was performed in the summer of 2007, the point of confluence of a rather atypical vintage year in the area with abnormally low temperatures after a very humid spring

REVINE project : regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area.
Regenerative agriculture ameliorates soil structure and microbial biodiversity that, in turn, leads to crop resilience against biotic and abiotic stressful factors. Moreover, enrichment of beneficial microbes in the rhizosphere, such as PGPR and PGPF, are known to trigger the plant immunity inducing the priming state.