GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

Ozone treatment: a solution to improve sanitary and physiological quality of vine plant

Abstract

Context and purpose of the study – The vineyard world is faced to a lot of fungal diseases. Grapevine Trunk Diseases (GTD) are some of the major. After exhibiting chronical foliar symptoms, grapevines can die by apoplexy within only few days. A range species of fungi was described to be associated with the apparition of early symptoms of GTD. It is well known that ozone dissolved into water is a powerful disinfectant with no remanence. The main goal of this study was to test the efficiency of this process on different fungal species associated with GTD in vitro and in planta conditions.

Material and methods – In vitro sanitary tests: Eighteen strains of two different species associated with GTD were selected (Phaeomoniella chlamydospora and Phaeoacremonium minimum). Ozone dissolved into water (4.5 g.m-3 according the Henry’s law) or autoclaved demineralized water (control) were applied on spore suspensions from strains. Suspensions were then plated on agar medium. Germinating spores were observed after five days. In vivo sanitary tests:Cuttings of Vitis vinifera Cabernet-Sauvignon clone 15 were drilled until the vascular channels. In each injury, plants received 20 µL of spore suspension (105 spores.mL-1) of P. minimum. Immediately after inoculation, infected wounded damages were treated with 20 µL of ozone dissolved into water (4.5 g.m-3 according the Henry’s law). The fungal development was evaluated 4, 6 and 9 weeks after inoculation by q-PCR.

Results – In vitro sanitary tests: Solution of ozone dissolved into water presented a complete sporicide effect. Indeed, no spore germinated in ozonated treatments whereas water treated controls normally developed. In vivo sanitary tests:The anti-fungal abilities of ozone treatment were secondly assessed by quantification of P. minimum DNA in woody tissues (via qPCR). Four and six weeks after inoculation, ozone treatment strongly reduced the source of inoculum present in the injury, resulting in more of 50% decrease of the number of P. minimum copies per ng of total. After nine weeks, the quantity of DNA is more important in ozone modality than in control modality. These results suggest that ozone treatment slowed down the fungal colonization via its primary sporicide effect in cutting-wounding conditions. Finally, consequences on the physiological aspect of the plant after ozone treatment should be discussed during the congress thanks to some news results.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Ana ROMEO OLIVAN1,ǂ, Marielle PAGÈS1, 2,*,ǂ, Coralie BRETON1, Frédéric VIOLLEAU2,3 and Alban JACQUES1

1 PPGV, INP-PURPAN, F-31076 Toulouse, France
2 Plateforme TOAsT, Université de Toulouse, INP-PURPAN, Toulouse, France
3 Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, 31000 Toulouse, France
ǂ These authors contributed equally to this work

Contact the author

Keywords

grapevine, fungi, ozone, disinfection, growth

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Application of uv-led in wine as an alternative to sulphur dioxide

Sulfites (SO2) are commonly used in the wine industry to preserve products during storage for antiseptic and antioxidant purposes (Oliveira et al., 2011).

The myth of the universal rootstock revisited: assessment of the importance of interactions between scion and rootstock

Aim‐ Rootstocks provide protection against soil borne pests and are a powerful tool to manipulate growth, fruit composition and wine quality attributes

Validation of a method for the determination of volatile compounds in in spirituous beverages using contained ethanol as a reference substance

The results of experimental studies of the method based on the usage of ethyl alcohol as an internal standard for the direct determination of volatile compounds in wines and others alcohol contained products are presented. The method was validated in terms of precision, accuracy, limits of detection and quantification (lod and loq), linearity, and robustness.

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.

New fungus-resistant grapevine varieties display high and drought-independent thiol precursor levels

The use of varieties tolerant to diseases is a long-term but promising option to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are starting to release a range of new hybrids performing well regarding fungi susceptibility and wine quality.