GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The effects of reducing herbicides in New Zealand vineyards

The effects of reducing herbicides in New Zealand vineyards

Abstract

Context and purpose of the study – Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Material and methods – This trial was conducted in the 2016-17, 2017-18 and 2018-19 seasons in three Merlot and three Sauvignon blanc vineyards in New Zealand. The trial was a split plot, with half the vineyard receiving multiple sprays (the industry standard). The other half received a single spray around budburst, and any subsequent undervine weeding was done using nonchemical methods (mowing or cultivation). In each vineyard half, five sampling locations were established for vine, fruit, and undervine measurements. Vines were assessed for canopy gaps by image analysis, yield, and rot severity. Fruit was sampled during ripening and at harvest to assess differences in chemical composition. The undervine area was surveyed at budburst, flowering, veraison, and harvest to assess differences in bare area and presence/abundance of various plant species.

Results – Reducing herbicide had a dramatic effect on the percent bare area under vines, as well as the species of undervine vegetation from flowering onwards. In most vineyards, canopy growth was similar for both the control (C) and reduced herbicide (RH) treatments, though a few differences were found, generally with the RH treatment having more gaps. A few differences were found in midday water potential, with the RH treatment generally having more negative SWP. Despite differences in canopy gaps and SWP, there were few effects on berry size or soluble solids. There were few other fruit compositional differences, though the RH fruit tended to have lower yeast assimilable nitrogen (YAN) than the C fruit. Yield was generally not affected by reducing herbicide, and rot severity tended to be similar between treatments, indicating no negative effects on fruit quantity or health from allowing more vegetation to become established under vines. These data show that herbicide use can be reduced by 50-75% with little negative effect on grapevines or their fruit. It is anticipated that adopting this technique will reduce herbicide residues in/on fruit and slow or stop the spread of herbicide resistant weeds.

DOI:

Publication date: September 26, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Tingting ZHANG1, Allison HAYWOOD2, Mark KRASNOW2*

1 Thoughtful Viticulture, Napier, Hawke’s Bay, New Zealand
2 Thoughtful Viticulture, PO Box 312, Blenheim, 7240, New Zealand

Contact the author

Keywords

herbicide, resistance, grapevine, weeds, sustainability

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

Are all red wines equals regarding their vulnerability to Brettanomyces bruxellensis ?

Odours deemed harmful by the consumer and described as “stable”, “horse sweat” or “burnt plastic” can be found in wines. The responsible molecules are volatile phenols, produced by a spoilage yeast: brettanomyces bruxellensis. This species is particularly well adapted to the wine environment and can resists many stresses such as a high alcohol level, a low ph or high levels of SO2, more or less efficiently depending on the strain considered.

Water is the most abundant active compound in wine!

Proton relaxation in model and real wines was investigated by fast field cycling NMR relaxometry. Albeit protons of wine are largely belonging to water molecules, their magnetic relaxation rates actually depend on various physico-chemical parameters related to the state of the wine and to its composition.

Étude de la variabilité des facteurs naturels du terroir viticole, à travers une gamme d’A.O.C. en Anjou (France)

Un programme de recherche concernant les facteurs naturels et humains des terroirs viticoles a été développé dans le vignoble A.O.C. de l’Anjou, sur une surface d’environ 30.000 Ha

Quantifying water use diversity across grapevine rootstock-scion combinations

Vines require proper light levels, temperature, and water availability, and climate change is modifying these factors, hampering yield and quality. Despite the large diversity of rootstocks, varieties, and clones, we still lack knowledge of their combined effects and potential role in a warmer and dryer future. Therefore, we aim to characterize some of the existing diversity of rootstocks and genotypes and their interaction at the eco-physiological level, combining stomatal conductance (gs) and chlorophyll a fluorescence analysis.