GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

Abstract

Contex and purpose of this study – The leaf area is of fundamental importance so that the plant can realize adequate levels of photosynthesis for the accumulation of reserves and to reach a suitable maturation of the berries. In this sense, the objective was to evaluate the effect of different lengths of the stalks from the first support wire, in the must and in the wine of ‘Cabernet Sauvignon’.

Material and methods – The study was carried out by the Nucleus of Study, Research and Extension in Enology (NEPE²), of the Bachelor’s Degree in Oenology of UNIPAMPA. The treatments were separated from the stalks at 60 cm (T1), 80 cm (T2), 100 cm (T3) and 120 cm (T4). The experiment was carried out in a vineyard located in the municipality of Dom Pedrito – RS, Brazil, during the 2015/16 crop, in ‘Cabernet Sauvignon’ grapevines at the age of 16, grafted on ‘SO4’ rootstocks and conducted in espalier. The experimental design was completely randomized blocks. The physicochemical analyzes of the must were Total Acidity – TA (g L-1), pH e, Reducing Sugars (g L-1). In the wine it was evaluated: Alcohol (% v/v), TA (g L-1), Volatile Acidity (g L-1), Glycerol (g L-1), Anthocyanin (g L-1), Color Intensity and Total Polyphenol Index (TPI).
The data were submitted to the Tukey averages comparison test at 5% probability.

Results – Treatment T3 (vegetative canopy height of 100 cm) had the highest TA value (3.1 g L-1). For the pH of the must, it decreased significantly as the canopy height increased. In wine, the alcohol content of the T4 treatment (120 cm) was the one with the highest value. In relation to the amount of anthocyanins, T1 treatment (60 cm) presented a higher amount of anthocyanins, T4 (120 cm), showed a color intensity, and a higher proportion of anthocyanins that give red tonality in the wine (520 nm) than the anthocyanins that give yellow tint in the wine (420 nm), thus the T4 (120 cm) was the treatment that showed the highest intensity of color, whereas the T3 (100 cm) was the one that presented less anthocyanins and color intensity. Preliminarily, it is concluded that maintaining the canopy of different sizes in the vegetative period has a significant influence on the quality of the must and wine of ‘Cabernet Sauvignon’ cultivated in the region of Dom Pedrito, RS, Brazil.

DOI:

Publication date: September 29, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Pedro Paulo PARISOTO1, Jansen Moreira SILVEIRA1, Nadia Cristiane Alves VIANNA1, Alice Farias MAIA1, Marcos GABBARDO1, César Valmor ROMBALDI2, Juan SAAVEDRA DEL AGUILA1*

1 University Federal of Pampa (UNIPAMPA), Cep 96450-000, Dom Pedrito, Rio Grande do Sul (RS), Brazil
2 Federal University of Pelotas (UFPel), Pelotas, RS, Brazil

Contact the author

Keywords

Vitis vinifera L., carbohydrates, photosynthesis, viticulture

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Evaluation of mannoprotein formation by different yeast strains by enzymatic analysis of mannose and tribological estimation of astringency

A positive role of mannoproteins on wine stability and red wine mouth sensations has been widely described. Commercial mannoproteins are available and some yeast strains are offered with a higher formation of mannoproteins.

Evidence for terroir effect associated with botrytisation relatively to compounds implicated in typical aromas of noble rot sweet wines

Recent studies have demonstrated the role of certain lactones, particularly 2-nonen-4-olide, and volatile thiols (3-sulfanylhexan-1-ol) in the over ripped aromas of noble rot sweet wines (Stamatopoulos et al. 2014ab). These compounds are partly formed during the maturation and under the activity of B. cinerea on grapes. This research was carried out in the vineyard of Sauternes with aim to better understand their genesis depending on the grape over-ripening on two different soil types during 3 vintages. Thus, the study was conducted, with the Sémillon grape, during vintages 2012, 2014 & 2015, at 4 stages of over-maturation of the grapes (healthy, pourri plein, pourri roti, pourri roti + 15 days) considering two vineyard plots with different soil characteristics (calcosol & peyrosol) planted with the 315 Sémillon clone and grafted on 101-14 rootstock respectively in 1981 and 1980 and cultivated with the same vineyard management. Volatile lactones were assayed by liquid-liquid extraction followed by GC/MS analysis and the precursors of 3-sulfanylhexanol by an adaptation of the method by Capone et al. 2010 (SPE-
UPLC/FTMS).

Looking for a more efficient genotypes in water use. A key for a sustainable viticulture

Aim: Grapevine has traditionally been widely cultivated in drylands. However, in recent decades, a significant part of the viticulture all over the word and specifically in Mediterranean basin, is being irrigated. In recent years, due to climate change, among other reasons, the available natural water resources have been reduced substantially compromising the sustainability of viticulture, especially in the most arid areas

Determination of metallic elements in Chilean wines by atomic absorption spectroscopy and inductively coupled plasma–mass spectrometry

The chemical composition of wines depends on series of variables such as the type of grape, edaphoclimatic conditions, and viticulture and winemaking practices employed during production. Metallic elements play a significant role during winemaking (e.g. as catalysts of oxidation reactions) and have been previously employed for the classification of wines according to provenance. In this work, we focused on the analysis of metallic elements (K, Na, Ca, Zn, Cu, Fe, Mg, Mn, Ni, Cr, Al, Pb, Cd, Hg, Se, Co, Sn and As) in 145 Chilean wine samples (102 reds and 43 white wines), of seven grape varieties, and five of the major wine producing regions in Chile.

Solid Rectified Concentrated grape Must (SRCM) in sparkling wines production: studying the sensory impact of an innovative sugar substrate

The production of sparkling wines requires sugars for the second fermentation. The Solid Rectified Concentrated Must (SRCM) is a water free crystalline form of grape sugar, offering a purer, more stable, and easier-to-use alternative to the liquid Rectified Concentrated Must (RCM).